Unsupervised dimensionality reduction for gaussian mixture model

Xi Yang*, Kaizhu Huang, Rui Zhang

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

7 Citations (Scopus)

Abstract

Dimensionality reduction is a fundamental yet active research topic in pattern recognition and machine learning. On the other hand, Gaussian Mixture Model (GMM), a famous model, has been widely used in various applications, e.g., clustering and classification. For highdimensional data, previous research usually performs dimensionality reduction first, and then inputs the reduced features to other available models, e.g., GMM. In particular, there are very few investigations or discussions on how dimensionality reduction could be interactively and systematically conducted together with the important GMM. In this paper, we study the problem how unsupervised dimensionality reduction could be performed together with GMM and if such joint learning could lead to improvement in comparison with the traditional unsupervised method. Specifically, we engage the Mixture of Factor Analyzers with the assumption that a common factor loading exist for all the components. Such setting exactly optimizes a dimensionality reduction together with the parameters of GMM. We compare the joint learning approach and the separate dimensionality reduction plus GMM method on both synthetic data and real data sets. Experimental results show that the joint learning significantly outperforms the comparison method in terms of three criteria for supervised learning.

Original languageEnglish
Title of host publicationNeural Information Processing - 21st International Conference, ICONIP 2014, Proceedings
EditorsChu Kiong Loo, Keem Siah Yap, Kok Wai Wong, Andrew Teoh, Kaizhu Huang
PublisherSpringer Verlag
Pages84-92
Number of pages9
ISBN (Electronic)9783319126395
DOIs
Publication statusPublished - 2014
Event21st International Conference on Neural Information Processing, ICONIP 2014 - Kuching, Malaysia
Duration: 3 Nov 20146 Nov 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8835
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Neural Information Processing, ICONIP 2014
Country/TerritoryMalaysia
CityKuching
Period3/11/146/11/14

Cite this