TY - CHAP
T1 - Traffic State Prediction and Traffic Control Strategy for Intelligent Transportation Systems
AU - Wang, Shangbo
PY - 2022/3/9
Y1 - 2022/3/9
N2 - The recent development of V2V (Vehicle-to-Vehicle), V2I (Vehicle-to-Infrastructure), V2X (Vehicle-to-Everything) and vehicle automation technologies have enabled the concept of Connected and Automated Vehicles (CAVs) to be tested and explored in practice. Traffic state prediction and control are two key modules for CAV systems. Traffic state prediction is important for CAVs because adaptive decisions, control strategies such as adjustment of traffic signals, turning left or right, stopping or accelerating and decision-making of vehicle motion rely on the completeness and accuracy of traffic data. For a given traffic state and input action, the future traffic states can be predicted via data-driven approaches such as deep learning models. RL (Reinforcement Learning) - based approaches gain the most popularity in developing optimum control and decision-making strategies because they can maximize the long-term award in a complex system via interaction with the environment. However, RL technique still has some drawbacks such as a slow convergence rate for high-dimensional states, etc., which need to be overcome in future research. This chapter aims to provide a comprehensive survey of the state-of-the-art solutions for traffic state prediction and traffic control strategies.
AB - The recent development of V2V (Vehicle-to-Vehicle), V2I (Vehicle-to-Infrastructure), V2X (Vehicle-to-Everything) and vehicle automation technologies have enabled the concept of Connected and Automated Vehicles (CAVs) to be tested and explored in practice. Traffic state prediction and control are two key modules for CAV systems. Traffic state prediction is important for CAVs because adaptive decisions, control strategies such as adjustment of traffic signals, turning left or right, stopping or accelerating and decision-making of vehicle motion rely on the completeness and accuracy of traffic data. For a given traffic state and input action, the future traffic states can be predicted via data-driven approaches such as deep learning models. RL (Reinforcement Learning) - based approaches gain the most popularity in developing optimum control and decision-making strategies because they can maximize the long-term award in a complex system via interaction with the environment. However, RL technique still has some drawbacks such as a slow convergence rate for high-dimensional states, etc., which need to be overcome in future research. This chapter aims to provide a comprehensive survey of the state-of-the-art solutions for traffic state prediction and traffic control strategies.
M3 - Chapter
BT - Intelligent Electronics and Circuits - Terahertz, ITS, and Beyond
PB - intechopen
ER -