Topoisomerase 2 inhibitor etoposide promotes interleukin-10 production in LPS-induced macrophages via upregulating transcription factor Maf and activating PI3K/Akt pathway

Jiaxin Zhang, Haoxin Zhao, Yuan Feng, Xin Xu, Yili Yang, Pengxia Zhang*, Zhiliang Lu*, Tao Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Topoisomerase (TOP) inhibitors were commonly used as chemotherapeutic agents in the treatment of cancers. In our present study, we found that etoposide (ETO), a topoisomerase 2 (TOP2) inhibitor, upregulated the production of Interleukin 10 (IL-10) in lipopolysaccharide (LPS)-stimulated macrophages. Besides, other TOP2 inhibitors including doxorubicin hydrochloride (DOX) and teniposide (TEN) were also able to augment IL-10 production. Meanwhile, the expression levels of pro-inflammatory factors, for example IL-6 and TNF-α, were also decreased accordingly by the treatment of the TOP2 inhibitors. Of note, ETO facilitated IL-10 secretion, which might be regulated by transcription factor Maf via PI3K/AKT pathway, as pharmaceutic blockage of kinase PI3K or AKT attenuated ETO-induced Maf and IL-10 expression. Further, in LPS-induced mice sepsis model, the enhanced generation of IL-10 was observed in ETO-treated mice, whereas pro-inflammatory cytokines were decreased, which significantly reduced the mortality of mice from LPS-induced lethal cytokine storm. Taken together, these results indicated that ETO may exhibit an anti-inflammatory role by upregulating the alteration of transcription factor Maf and promoting subsequential IL-10 secretion via PI3K/Akt pathway in LPS-induced macrophages. Therefore, ETO may serve as a potential anti-inflammatory agent and employed to severe pro-inflammatory diseases including COVID-19.

Original languageEnglish
Article number108264
JournalInternational Immunopharmacology
Volume101
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Etoposide
  • IL-10
  • Inflammation
  • Maf
  • PI3K/Akt
  • TOP II inhibtor

Cite this