Third-order nonlinear optical properties of an azobenzene derivate

Meng Meng Li, Bao Hua Zhu, Xia Ran, Bo Liu*, Li Jun Guo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In recent years, azobenzene derivates have received much attention for their potential application in optical data storage, biophotonics, holographic memories and waveguide switches optical sensors, and sensitive optical components from laser damage in both civilian and military applications. Experimental and theoretical studies demonstrate clearly the effect of the sonor-pi-acceptor (D-π-A) conjugation on the steady-state and time-resolved PL spectra of azobenzene derivate films in multifarious situations, but comparatively little is concerned about the two-photon absorption and refraction involved in a single benzene ring. Furthermore, the excitation laser source on the azobenzene derivates in some investigations is continuum laser or nanosecond pulsed laser, where it is hard to avoid thermal effect on nonlinear optical (NLO) process produced by these lasers. To explore the origin of the azobenzene derivates' D-π-A conjugation-dependent NLO process is a challenging task and has great signicance in describing the molecular structures of these azobenzene nanostructures as well as improving the performance of azobenzene derivates' devices. The D-π-A conjugation of azobenzene functional material can be modified by mixing the azobenzene derivates with metal nanoparticles, so it is convenient to study how the D-π-A conjugation affects the NLO properties by using the azobenzene derivate-metal composites. In this letter, the D-π-A conjugation-dependent NLO absorption and refraction of the two kinds of azobenzene derivates 4-((4'-hydroxybenzene) azo) benzyl acid (BN) and N-(3, 4, 5-octanoxyphnyl)-N'-4-[(4-hydroxyphenyl) azophenyl]1, 3, 4-oxadiazole (AOB-t8) are investigated by Z-scan technology using 32 ps laser pulse width at 532 nm. The azobenzene derivates' surface is modified using the D-π-A conjugation control and overcoating Au nanoparticles on the azobenzene derivates; and the Au/AOB-t8 composites, BN and AOB-t8 are characterized by Z-scans and absorption/fluorescence spectrum, and also calculated based on plasma resonance. The third-order NLO susceptibility of AOB-t8 is enhanced as compared with BN due to the growing conjugate chain and the increasingly extended π bond. However, the third-order NLO susceptibility of AOB-t8 is decreased in the composite (Au/AOB-t8) for the cooperation of the local field effect induced by the gold nanoparticles and the extended π bond of organic molecules. This work may be helpful to the understanding of the physical mechanism of the surface states and the surface-related optical nonlinearity of semiconductor QDs.

Original languageEnglish
Article number024207
JournalWuli Xuebao/Acta Physica Sinica
Volume65
Issue number2
DOIs
Publication statusPublished - 20 Jan 2016
Externally publishedYes

Keywords

  • Azobenzene derivates
  • Local field
  • Surface plasmon resonance
  • Third-order optical nonlinearity

Fingerprint

Dive into the research topics of 'Third-order nonlinear optical properties of an azobenzene derivate'. Together they form a unique fingerprint.

Cite this