TY - JOUR
T1 - Thermal WIMPs and the scale of new physics
T2 - global fits of Dirac dark matter effective field theories
AU - GAMBIT Collaboration
AU - Athron, Peter
AU - Kozar, Neal Avis
AU - Balázs, Csaba
AU - Beniwal, Ankit
AU - Bloor, Sanjay
AU - Bringmann, Torsten
AU - Brod, Joachim
AU - Chang, Christopher
AU - Cornell, Jonathan M.
AU - Farmer, Ben
AU - Fowlie, Andrew
AU - Gonzalo, Tomás E.
AU - Handley, Will
AU - Kahlhoefer, Felix
AU - Kvellestad, Anders
AU - Mahmoudi, Farvah
AU - Prim, Markus T.
AU - Raklev, Are
AU - Renk, Janina J.
AU - Scaffidi, Andre
AU - Scott, Pat
AU - Stöcker, Patrick
AU - Vincent, Aaron C.
AU - White, Martin
AU - Wild, Sebastian
AU - Zupan, Jure
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/11
Y1 - 2021/11
N2 - We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework GAMBIT. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and several nuisance parameters. Our likelihood functions include the latest data from Planck, direct and indirect detection experiments, and the LHC. For DM masses below 100 GeV, we find that it is impossible to satisfy all constraints simultaneously while maintaining EFT validity at LHC energies. For new physics scales around 1 TeV, our results are influenced by several small excesses in the LHC data and depend on the prescription that we adopt to ensure EFT validity. Furthermore, we find large regions of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.
AB - We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework GAMBIT. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and several nuisance parameters. Our likelihood functions include the latest data from Planck, direct and indirect detection experiments, and the LHC. For DM masses below 100 GeV, we find that it is impossible to satisfy all constraints simultaneously while maintaining EFT validity at LHC energies. For new physics scales around 1 TeV, our results are influenced by several small excesses in the LHC data and depend on the prescription that we adopt to ensure EFT validity. Furthermore, we find large regions of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.
UR - http://www.scopus.com/inward/record.url?scp=85119675778&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-021-09712-6
DO - 10.1140/epjc/s10052-021-09712-6
M3 - Article
AN - SCOPUS:85119675778
SN - 1434-6044
VL - 81
JO - European Physical Journal C
JF - European Physical Journal C
IS - 11
M1 - 992
ER -