Abstract
This work investigates the photoelectrochemical performance of an FTO (Fluorine-doped Tin Oxide) /WO3 (tungsten trioxide) /BiVO4 (bismuth vanadate) /TiO2 (titanium dioxide) photoanode for water splitting. By forming a heterojunction between WO3 and BiVO4, charge separation and transportation are significantly enhanced, resulting in an improved photocurrent density. Surface modification with a thin TiO2 layer further improves the stability of the photoanode without compromising its photocurrent. The SEM, XRD, and XPS analyses confirm the successful formation of the photoanode structure. The photoelectrochemical J-V curves demonstrate that the WO3/BiVO4 composite electrode outperforms single WO3 and BiVO4 electrodes, and the TiO2 coating further enhances its performance. These findings provide valuable insights into optimizing BiVO4-based photoanodes for efficient hydrogen production via water splitting.
Original language | English |
---|---|
Article number | 112457 |
Journal | Chemical Physics |
Volume | 588 |
DOIs | |
Publication status | Published - 1 Jan 2025 |
Keywords
- BiVO
- Heterojunction
- Photoanode
- Photoelectrochemical Performance
- Water Splitting