TY - JOUR
T1 - The DRAGON simulations
T2 - Globular cluster evolution with a million stars
AU - Wang, Long
AU - Spurzem, Rainer
AU - Aarseth, Sverre
AU - Giersz, Mirek
AU - Askar, Abbas
AU - Berczik, Peter
AU - Naab, Thorsten
AU - Schadow, Riko
AU - Kouwenhoven, M. B.N.
N1 - Publisher Copyright:
© 2016 The Authors.
PY - 2016/3/2
Y1 - 2016/3/2
N2 - Introducing the dragon simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with nbody6++gpu and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour-magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived 'dark' nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core - commonly observed in the (luminous) surface brightness profiles - shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.
AB - Introducing the dragon simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with nbody6++gpu and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour-magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived 'dark' nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core - commonly observed in the (luminous) surface brightness profiles - shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.
KW - Globular clusters: General
KW - Methods: Numerical
KW - Stars: Black holes
KW - Stars: Kinematics and dynamics
UR - http://www.scopus.com/inward/record.url?scp=84963837846&partnerID=8YFLogxK
U2 - 10.1093/mnras/stw274
DO - 10.1093/mnras/stw274
M3 - Article
AN - SCOPUS:84963837846
SN - 0035-8711
VL - 458
SP - 1450
EP - 1465
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -