TY - JOUR
T1 - The degree of Kummer extensions of number fields
AU - Perucca, Antonella
AU - Sgobba, Pietro
AU - Tronto, Sebastiano
N1 - Publisher Copyright:
© 2021 World Scientific Publishing Co. Pte Ltd. All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - Let K be a number field, and let α1,.,αr be elements of K× which generate a subgroup of K× of rank r. Consider the cyclotomic-Kummer extensions of K given by K(ζn,α1n1,.,αrnr), where ni divides n for all i. There is an integer x such that these extensions have maximal degree over K(ζg,α1g1,.,αrgr), where g =gcd(n,x) and gi =gcd(ni,x). We prove that the constant x is computable. This result reduces to finitely many cases the computation of the degrees of the extensions K(ζn,α1n1,.,αrnr) over K.
AB - Let K be a number field, and let α1,.,αr be elements of K× which generate a subgroup of K× of rank r. Consider the cyclotomic-Kummer extensions of K given by K(ζn,α1n1,.,αrnr), where ni divides n for all i. There is an integer x such that these extensions have maximal degree over K(ζg,α1g1,.,αrgr), where g =gcd(n,x) and gi =gcd(ni,x). We prove that the constant x is computable. This result reduces to finitely many cases the computation of the degrees of the extensions K(ζn,α1n1,.,αrnr) over K.
KW - Kummer extension
KW - Kummer theory
KW - Number field
KW - degree
UR - http://www.scopus.com/inward/record.url?scp=85095775289&partnerID=8YFLogxK
U2 - 10.1142/S1793042121500263
DO - 10.1142/S1793042121500263
M3 - Article
AN - SCOPUS:85095775289
SN - 1793-0421
VL - 17
SP - 1091
EP - 1110
JO - International Journal of Number Theory
JF - International Journal of Number Theory
IS - 5
ER -