The Classification of Wink-Based EEG Signals: An Evaluation of Different Transfer Learning Models for Feature Extraction

Jothi Letchumy Mahendra Kumar, Mamunur Rashid, Rabiu Muazu Musa, Mohd Azraai Mohd Razman, Norizam Sulaiman, Rozita Jailani, Anwar P. P. Abdul Majeed*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Electroencephalogram (EEG) is non-trivial in the diagnosis and treatment of neurogenerative diseases. Brain-Computer Interface (BCI) that utilises EEG is often used to improve the activities of daily living of patients with the aforesaid disorder. In this study, the efficacy of different Transfer Learning (TL) models, i.e., ResNet50, ResNet101 and ResNet152 in extracting features to classify wink-based EEG signals is evaluated. The time–frequency spectrum transformation of the Right-Wink, Left-Wink, and No-Wink based on EEG signals was achieved via Discrete Wavelet Transform (DWT). The extracted features were then fed into different variation of Support Vector Machine (SVM) classifiers to evaluate the performance of the different feature extraction method in classifying the wink class. The data are divided into training, validation, ad test, with a stratified ratio of 60:20:20. It was shown from the study, that the features extracted via ResNet152 were better than that of ResNet50 and ResNet101. The overall validation and test accuracy attained through the ResNet152 model is approximately 92%. Henceforth, it could be concluded that the proposed pipeline suitable to be adopted to classify wink-based EEG signals for different BCI applications.

Original languageEnglish
Title of host publicationRecent Trends in Mechatronics Towards Industry 4.0 - Selected Articles from iM3F 2020
EditorsAhmad Fakhri Ab. Nasir, Ahmad Najmuddin Ibrahim, Ismayuzri Ishak, Nafrizuan Mat Yahya, Muhammad Aizzat Zakaria, Anwar P. P. Abdul Majeed
PublisherSpringer Science and Business Media Deutschland GmbH
Pages61-70
Number of pages10
ISBN (Print)9789813345966
DOIs
Publication statusPublished - 2022
Externally publishedYes
EventInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020 - Gambang, Malaysia
Duration: 6 Aug 20206 Aug 2020

Publication series

NameLecture Notes in Electrical Engineering
Volume730
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020
Country/TerritoryMalaysia
CityGambang
Period6/08/206/08/20

Keywords

  • BCI
  • Classification
  • DWT
  • EEG
  • SVM
  • Transfer learning

Fingerprint

Dive into the research topics of 'The Classification of Wink-Based EEG Signals: An Evaluation of Different Transfer Learning Models for Feature Extraction'. Together they form a unique fingerprint.

Cite this