TY - JOUR
T1 - The classification of EEG-based winking signals
T2 - A transfer learning and random forest pipeline
AU - Mahendra Kumar, Jothi Letchumy
AU - Rashid, Mamunur
AU - Musa, Rabiu Muazu
AU - Mohd Razman, Mohd Azraai
AU - Sulaiman, Norizam
AU - Jailani, Rozita
AU - Abdul Majeed, Anwar P.P.
N1 - Funding Information:
This work was supported by Universiti Malaysia Pahang via grant number RDU180321. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
Copyright 2021 Mahendra Kumar et al.
PY - 2021/3/31
Y1 - 2021/3/31
N2 - Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the classification of the signals is non-trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards BCI applications, particularly in regard to EEG signals, are somewhat limited. The present study aims to evaluate the effectiveness of different TL models in extracting features for the classification of wink-based EEG signals. The extracted features are classified by means of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into training, validation, and test datasets, respectively, via a stratified ratio of 60:20:20. The hyperparameters of the RF models were optimised through the grid search approach, in which the five-fold cross-validation technique was adopted. The optimised RF classifier performance was compared with the conventional TL-based CNN classifier performance. It was demonstrated from the study that the best TL model identified is the Inception ResNetV2 along with an optimised RF pipeline, as it was able to yield a classification accuracy of 100% on both the training and validation dataset. Therefore, it could be established from the study that a comparable classification efficacy is attainable via the Inception ResNetV2 with an optimised RF pipeline. It is envisaged that the implementation of the proposed architecture to a BCI system would potentially facilitate post-stroke patients to lead a better life quality.
AB - Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the classification of the signals is non-trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards BCI applications, particularly in regard to EEG signals, are somewhat limited. The present study aims to evaluate the effectiveness of different TL models in extracting features for the classification of wink-based EEG signals. The extracted features are classified by means of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into training, validation, and test datasets, respectively, via a stratified ratio of 60:20:20. The hyperparameters of the RF models were optimised through the grid search approach, in which the five-fold cross-validation technique was adopted. The optimised RF classifier performance was compared with the conventional TL-based CNN classifier performance. It was demonstrated from the study that the best TL model identified is the Inception ResNetV2 along with an optimised RF pipeline, as it was able to yield a classification accuracy of 100% on both the training and validation dataset. Therefore, it could be established from the study that a comparable classification efficacy is attainable via the Inception ResNetV2 with an optimised RF pipeline. It is envisaged that the implementation of the proposed architecture to a BCI system would potentially facilitate post-stroke patients to lead a better life quality.
KW - Continuous wavelet transform
KW - EEG
KW - Random forest
KW - Transfer learning
KW - Winking
UR - http://www.scopus.com/inward/record.url?scp=85103468317&partnerID=8YFLogxK
U2 - 10.7717/peerj.11182
DO - 10.7717/peerj.11182
M3 - Article
AN - SCOPUS:85103468317
SN - 2167-8359
VL - 9
JO - PeerJ
JF - PeerJ
M1 - e11182
ER -