Tagging your tweets: A probabilistic modeling of hashtag annotation in twitter

Zongyang Ma, Aixin Sun, Quan Yuan, Gao Cong

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

42 Citations (Scopus)

Abstract

The adoption of hashtags in major social networks including Twitter, Facebook, and Google+ is a strong evidence of its importance in facilitating information diffusion and social chatting. To understand the factors (e.g., user interest, posting time and tweet content) that may affect hashtag annotation in Twitter and to capture the implicit relations between latent topics in tweets and their corresponding hashtags, we propose two PLSA-style topic models to model the hashtag annotation behavior in Twitter. Content-Pivoted Model (CPM) assumes that tweet content guides the generation of hashtags while Hashtag-Pivoted Model (HPM) assumes that hash-tags guide the generation of tweet content. Both models jointly incorporate user, time, hashtag and tweet content in a probabilistic framework. The PLSA-style models also enable us to verify the impact of social factor on hashtag annotation by introducing social network regularization in the two models. We evaluate the proposed models using perplexity and demonstrate their effectiveness in two applications: retrospective hashtag annotation and related hashtag discovery. Our results show that HPM outperforms CPM by perplexity and both user and time are important factors that affect model performance. In addition, incorporating social network regularization does not improve model performance. Our experimental results also demonstrate the effectiveness of our models in both applications compared with baseline methods.

Original languageEnglish
Title of host publicationCIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages999-1008
Number of pages10
ISBN (Electronic)9781450325981
DOIs
Publication statusPublished - 3 Nov 2014
Externally publishedYes
Event23rd ACM International Conference on Information and Knowledge Management, CIKM 2014 - Shanghai, China
Duration: 3 Nov 20147 Nov 2014

Publication series

NameCIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management

Conference

Conference23rd ACM International Conference on Information and Knowledge Management, CIKM 2014
Country/TerritoryChina
CityShanghai
Period3/11/147/11/14

Keywords

  • Hashtag
  • Hashtag annotation
  • Topic model
  • Twitter

Fingerprint

Dive into the research topics of 'Tagging your tweets: A probabilistic modeling of hashtag annotation in twitter'. Together they form a unique fingerprint.

Cite this