Tactile-Driven Gentle Grasping for Human-Robot Collaborative Tasks

Christopher J. Ford, Haoran Li, John Lloyd, Manuel G. Catalano, Matteo Bianchi, Efi Psomopoulou, Nathan F. Lepora

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

7 Citations (Scopus)

Abstract

This paper presents a control scheme for force sensitive, gentle grasping with a Pisa/IIT anthropomorphic SoftHand equipped with a miniaturised version of the TacTip optical tactile sensor on all five fingertips. The tactile sensors provide high-resolution information about a grasp and how the fingers interact with held objects. We first describe a series of hardware developments for performing asynchronous sensor data acquisition and processing, resulting in a fast control loop sufficient for real-time grasp control. We then develop a novel grasp controller that uses tactile feedback from all five fingertip sensors simultaneously to gently and stably grasp 43 objects of varying geometry and stiffness, which is then applied to a human-to-robot handover task. These developments open the door to more advanced manipulation with underactuated hands via fast reflexive control using high-resolution tactile sensing.

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10394-10400
Number of pages7
ISBN (Electronic)9798350323658
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Fingerprint

Dive into the research topics of 'Tactile-Driven Gentle Grasping for Human-Robot Collaborative Tasks'. Together they form a unique fingerprint.

Cite this