TY - JOUR
T1 - Synthesizing Multi-Contrast MR Images Via Novel 3D Conditional Variational Auto-Encoding GAN
AU - Yang, Huan
AU - Lu, Xianling
AU - Wang, Shui Hua
AU - Lu, Zhihai
AU - Yao, Jian
AU - Jiang, Yizhang
AU - Qian, Pengjiang
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - As two different modalities of medical images, Magnetic Resonance (MR) and Computer Tomography (CT), provide mutually-complementary information to doctors in clinical applications. However, to obtain both images sometimes is cost-consuming and unavailable, particularly for special populations. For example, patients with metal implants are not suitable for MR scanning. Also, it is probably infeasible to acquire multi-contrast MR images during once clinical scanning. In this context, to synthesize needed MR images for patients whose CT images are available becomes valuable. To this end, we present a novel generative network, called CAE-ACGAN, which incorporates the advantages of Variational Auto-Encoder (VAE) and Generative Adversarial Network (GAN) with an auxiliary discriminative classifier network. We apply this network to synthesize multi-contrast MR images from single CT and conduct experiments on brain datasets. Our main contributions can be summarized as follows: 1)We alleviate the problems of images blurriness and mode collapse by integrating the advantages of VAE and GAN; 2) We solve the complicated cross-domain, multi-contrast MR synthesis task using the proposed network; 3) The technique of random-extraction-patches is used to lower the limit of insufficient training data, enabling to obtain promising results even with limited available data; 4) By comparing with other typical networks, we are able to yield nearer-real, higher-quality synthetic MR images, demonstrating the effectiveness and stability of our proposed network.
AB - As two different modalities of medical images, Magnetic Resonance (MR) and Computer Tomography (CT), provide mutually-complementary information to doctors in clinical applications. However, to obtain both images sometimes is cost-consuming and unavailable, particularly for special populations. For example, patients with metal implants are not suitable for MR scanning. Also, it is probably infeasible to acquire multi-contrast MR images during once clinical scanning. In this context, to synthesize needed MR images for patients whose CT images are available becomes valuable. To this end, we present a novel generative network, called CAE-ACGAN, which incorporates the advantages of Variational Auto-Encoder (VAE) and Generative Adversarial Network (GAN) with an auxiliary discriminative classifier network. We apply this network to synthesize multi-contrast MR images from single CT and conduct experiments on brain datasets. Our main contributions can be summarized as follows: 1)We alleviate the problems of images blurriness and mode collapse by integrating the advantages of VAE and GAN; 2) We solve the complicated cross-domain, multi-contrast MR synthesis task using the proposed network; 3) The technique of random-extraction-patches is used to lower the limit of insufficient training data, enabling to obtain promising results even with limited available data; 4) By comparing with other typical networks, we are able to yield nearer-real, higher-quality synthetic MR images, demonstrating the effectiveness and stability of our proposed network.
KW - 3D
KW - Auto-encoding
KW - Generative adversarial network
KW - MR synthesis
KW - Multi-contrast
UR - http://www.scopus.com/inward/record.url?scp=85094113961&partnerID=8YFLogxK
U2 - 10.1007/s11036-020-01678-1
DO - 10.1007/s11036-020-01678-1
M3 - Article
AN - SCOPUS:85094113961
SN - 1383-469X
VL - 26
SP - 415
EP - 424
JO - Mobile Networks and Applications
JF - Mobile Networks and Applications
IS - 1
ER -