TY - JOUR
T1 - Study on the Arsenate Removal from Raw As(V)-Rich Wastewater Using Zero-Valent Iron
AU - Liang, Feng
AU - Wang, Le
AU - Zhu, Huijie
AU - Dong, Qian
AU - Zhang, Yan
AU - Liu, Jiayan
AU - Zhang, Siyu
AU - Ye, Zhiwei
AU - Zhang, Ye
AU - Zhang, Xiuji
AU - Liu, Bo
PY - 2022
Y1 - 2022
N2 - Due to the large volumes of solid waste produced by the traditional arsenic-rich lime iron salt precipitation method treatment produced during wet-smelting by precious metal workshops, raw As(V)-rich wastewater from a domestic metallurgical enterprise was chosen as the research object. Zero-valent iron (ZVI) was used to remove arsenate (As(V)) from raw wastewater. Factors affecting the adsorption of As(V), such as the ZVI size and adsorption time, were investigated. The As(V) removal percentage was >98.2% when using 40, 100, 250, or 300 mesh ZVI in a 2.8 mg center dot L-1 As(V) solution at pH 7, with an iron mass-wastewater ratio of 5 g/100 mL, and 12 h reaction time. The As(V) removal percentage was >86.5% when using 40 mesh ZVI after 50 min of reaction. A comprehensive evaluation was performed on the effects of factors such as cost and water head loss. Here, 40 mesh ZVI was used for column-based separation, in which the mass of solid waste was very small. Column experiments indicated that the adsorbent more efficiently eliminated arsenate in comparison to the earlier reported adsorbents. High bed volumes (BV) of 3200 BV, 6300 BV, and 8400 BV up to a breakthrough concentration of 100 mu g center dot L-1 were achieved for arsenate removal in the presence of 2.8 mg center dot L-1 of arsenic. The empty bed contact times (EBCTs) were 2.6 min, 5.1 min, and 9.8 min, respectively. Furthermore, the concentrations of other pollutants such as Cu2+, Zn2+, F-, Cd2+, Cr6+, Pb2+, and F- met the national discharge standard. The elimination of As(V) and other heavy metals from solutions employing ZVI is efficient, cheap, and produces no secondary environmental pollution, making it an ideal candidate for heavy metal removal from wastewater.
AB - Due to the large volumes of solid waste produced by the traditional arsenic-rich lime iron salt precipitation method treatment produced during wet-smelting by precious metal workshops, raw As(V)-rich wastewater from a domestic metallurgical enterprise was chosen as the research object. Zero-valent iron (ZVI) was used to remove arsenate (As(V)) from raw wastewater. Factors affecting the adsorption of As(V), such as the ZVI size and adsorption time, were investigated. The As(V) removal percentage was >98.2% when using 40, 100, 250, or 300 mesh ZVI in a 2.8 mg center dot L-1 As(V) solution at pH 7, with an iron mass-wastewater ratio of 5 g/100 mL, and 12 h reaction time. The As(V) removal percentage was >86.5% when using 40 mesh ZVI after 50 min of reaction. A comprehensive evaluation was performed on the effects of factors such as cost and water head loss. Here, 40 mesh ZVI was used for column-based separation, in which the mass of solid waste was very small. Column experiments indicated that the adsorbent more efficiently eliminated arsenate in comparison to the earlier reported adsorbents. High bed volumes (BV) of 3200 BV, 6300 BV, and 8400 BV up to a breakthrough concentration of 100 mu g center dot L-1 were achieved for arsenate removal in the presence of 2.8 mg center dot L-1 of arsenic. The empty bed contact times (EBCTs) were 2.6 min, 5.1 min, and 9.8 min, respectively. Furthermore, the concentrations of other pollutants such as Cu2+, Zn2+, F-, Cd2+, Cr6+, Pb2+, and F- met the national discharge standard. The elimination of As(V) and other heavy metals from solutions employing ZVI is efficient, cheap, and produces no secondary environmental pollution, making it an ideal candidate for heavy metal removal from wastewater.
U2 - 10.3390/w14071118
DO - 10.3390/w14071118
M3 - Article
SN - 2073-4441
VL - 14
JO - Water (Switzerland)
JF - Water (Switzerland)
IS - 7
ER -