TY - JOUR
T1 - Studies of oxytocin and vasopressin gene expression in the rat hypothalamus using exon- and intron-specific probes
AU - Yue, Chunmei
AU - Mutsuga, Noriko
AU - Scordalakes, Elka M.
AU - Gainer, Harold
PY - 2006/5
Y1 - 2006/5
N2 - To develop a comprehensive approach for the study of oxytocin (OT) and vasopressin (VP) gene expression in the rat hypothalamus, we first developed an intronic riboprobe to measure OT heteronuclear RNA (hnRNA) levels by in situ hybridization histochemistry (ISHH). Using this 84-bp riboprobe, directed against intron 2 of the OT gene, we demonstrate strong and specific signals in neurons confined to the supraoptic (SON) and paraventricular (PVN) nuclei of the rat hypothalamus. We used this new intronic OT probe, together with other well-established intronic and exonic OT and VP probes, to reevaluate OT and VP gene expression in the hypothalamus under two classical physiological conditions, acute osmotic stimulation, and lactation. We found that magnocellular neurons in 7- to 8-day lactating female rats exhibit increased OT but not VP hnRNA. Since VP mRNA is increased during lactation, this suggests that decreased VP mRNA degradation during lactation may be responsible for this change. In contrast, whereas there was the expected large increase in VP hnRNA after acute salt loading, there was no change in OT hnRNA, suggesting that acute hyperosmotic stimuli produce increased VP but not OT gene transcription. Hence, the use of both exon- and intron-specific probes, which distinguish the changes in hnRNA and mRNA levels, respectively, can provide insight into the relative roles of transcription and mRNA degradation processes in changes in gene expression evoked by physiological stimuli.
AB - To develop a comprehensive approach for the study of oxytocin (OT) and vasopressin (VP) gene expression in the rat hypothalamus, we first developed an intronic riboprobe to measure OT heteronuclear RNA (hnRNA) levels by in situ hybridization histochemistry (ISHH). Using this 84-bp riboprobe, directed against intron 2 of the OT gene, we demonstrate strong and specific signals in neurons confined to the supraoptic (SON) and paraventricular (PVN) nuclei of the rat hypothalamus. We used this new intronic OT probe, together with other well-established intronic and exonic OT and VP probes, to reevaluate OT and VP gene expression in the hypothalamus under two classical physiological conditions, acute osmotic stimulation, and lactation. We found that magnocellular neurons in 7- to 8-day lactating female rats exhibit increased OT but not VP hnRNA. Since VP mRNA is increased during lactation, this suggests that decreased VP mRNA degradation during lactation may be responsible for this change. In contrast, whereas there was the expected large increase in VP hnRNA after acute salt loading, there was no change in OT hnRNA, suggesting that acute hyperosmotic stimuli produce increased VP but not OT gene transcription. Hence, the use of both exon- and intron-specific probes, which distinguish the changes in hnRNA and mRNA levels, respectively, can provide insight into the relative roles of transcription and mRNA degradation processes in changes in gene expression evoked by physiological stimuli.
KW - Heteronuclear ribonucleic acid
KW - Hyperosmotic
KW - Lactation
UR - http://www.scopus.com/inward/record.url?scp=33646473841&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00709.2005
DO - 10.1152/ajpregu.00709.2005
M3 - Article
C2 - 16357095
AN - SCOPUS:33646473841
SN - 0363-6119
VL - 290
SP - R1233-R1241
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 5
ER -