TY - JOUR
T1 - Statistical physics of isotropic-genesis nematic elastomers
T2 - I. structure and correlations at high temperatures
AU - Lu, Bing Sui
AU - Ye, Fangfu
AU - Xing, Xiangjun
AU - Goldbart, Paul M.
N1 - Funding Information:
We thank Tom Lubensky, Leo Radzihovsky, Kenji Urayama and Mark Warner for informative discussions. This work was supported by the U.S. National Science Foundation via grants DMR 09 06780 and DMR 12 07026, the Institute for Complex Adaptive Matter, Shanghai Jiao Tong University and the National Science Foundation of China via Grants 11174196 and 91130012.
PY - 2013/7/10
Y1 - 2013/7/10
N2 - Isotropic-genesis nematic elastomers (IGNEs) are liquid crystalline polymers (LCPs) that have been randomly, permanently cross-linked in the high-temperature state so as to form an equilibrium random solid. Thus, instead of being free to diffuse throughout the entire volume, as they would be in the liquid state, the constituent LCPs in an IGNE are mobile only over a finite, segment specific, length-scale controlled by the density of cross-links. We address the effects that such network-induced localization have on the liquid-crystalline characteristics of an IGNE, as probed via measurements made at high temperatures. In contrast with the case of uncross-linked LCPs, for IGNEs these characteristics are determined not only by thermal fluctuations but also by the quenched disorder associated with the cross-link constraints. To study IGNEs, we consider a microscopic model of dimer nematogens in which the dimers interact via orientation-dependent excluded volume forces. The dimers are, furthermore, randomly, permanently cross-linked via short Hookean springs, the statistics of which we model by means of a Deam-Edwards type of distribution. We show that at length-scales larger than the size of the nematogens this approach leads to a recently proposed, phenomenological Landau theory of IGNEs [Lu et al., Phys. Rev. Lett. 108, 257803 (2012)], and hence predicts a regime of short-ranged oscillatory spatial correlations in the nematic alignment, of both thermal and glassy types. In addition, we consider two alternative microscopic models of IGNEs: (i) a wormlike chain model of IGNEs that are formed via the cross-linking of side-chain LCPs; and (ii) a jointed chain model of IGNEs that are formed via the cross-linking of main-chain LCPs. At large length-scales, both of these models give rise to liquid-crystalline characteristics that are qualitatively in line with those predicted on the basis of the dimer-and-springs model, reflecting the fact that the three models inhabit a common universality class.
AB - Isotropic-genesis nematic elastomers (IGNEs) are liquid crystalline polymers (LCPs) that have been randomly, permanently cross-linked in the high-temperature state so as to form an equilibrium random solid. Thus, instead of being free to diffuse throughout the entire volume, as they would be in the liquid state, the constituent LCPs in an IGNE are mobile only over a finite, segment specific, length-scale controlled by the density of cross-links. We address the effects that such network-induced localization have on the liquid-crystalline characteristics of an IGNE, as probed via measurements made at high temperatures. In contrast with the case of uncross-linked LCPs, for IGNEs these characteristics are determined not only by thermal fluctuations but also by the quenched disorder associated with the cross-link constraints. To study IGNEs, we consider a microscopic model of dimer nematogens in which the dimers interact via orientation-dependent excluded volume forces. The dimers are, furthermore, randomly, permanently cross-linked via short Hookean springs, the statistics of which we model by means of a Deam-Edwards type of distribution. We show that at length-scales larger than the size of the nematogens this approach leads to a recently proposed, phenomenological Landau theory of IGNEs [Lu et al., Phys. Rev. Lett. 108, 257803 (2012)], and hence predicts a regime of short-ranged oscillatory spatial correlations in the nematic alignment, of both thermal and glassy types. In addition, we consider two alternative microscopic models of IGNEs: (i) a wormlike chain model of IGNEs that are formed via the cross-linking of side-chain LCPs; and (ii) a jointed chain model of IGNEs that are formed via the cross-linking of main-chain LCPs. At large length-scales, both of these models give rise to liquid-crystalline characteristics that are qualitatively in line with those predicted on the basis of the dimer-and-springs model, reflecting the fact that the three models inhabit a common universality class.
KW - Liquid crystals
KW - elastomers
KW - liquid crystal elastomers
UR - http://www.scopus.com/inward/record.url?scp=84880276089&partnerID=8YFLogxK
U2 - 10.1142/S0217979213300120
DO - 10.1142/S0217979213300120
M3 - Review article
AN - SCOPUS:84880276089
SN - 0217-9792
VL - 27
JO - International Journal of Modern Physics B
JF - International Journal of Modern Physics B
IS - 17
M1 - 1330012
ER -