TY - JOUR
T1 - Stacking-faults consisting of rhombohedral stacking-order, hexagonal and one-dimensional moiré superlattices in exfoliated highly oriented pyrolytic graphite
AU - Boi, Filippo S.
AU - Lei, Li
AU - Gu, Aiqun
AU - Guo, Jian
AU - Wu, Hansong
AU - Wang, Shanling
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/4
Y1 - 2025/4
N2 - Understanding the stabilization of rhombohedral stacking-order and moiré superlattices in structural defects produced by exfoliation is of importance towards applications in nanoscale low-dimensional systems and superconductivity. Here we report a statistical investigation of the stabilization-dynamics of rhombohedral ABC stacking-faults within locally-lifted sublattices, fabricated by exfoliation of highly oriented pyrolytic graphite (HOPG). Raman point/mapping spectroscopy applied to several tens of locally-lifted lattice-regions reveal a weak enhancement of the ratio of the integral area of the 2D band-components, namely within the frequency range from ∼2550 to 2670 cm−1 (left shoulder) to that from ∼2670 to 2760 cm−1 (right shoulder). A structural transition is demonstrated with HRTEM revealing the coexistence of hexagonal and one-dimensional moiré superlattices with periods D-1–2.04 nm, D-2–2.35 nm (coexisting superlattice-periodicities) and D ∼ 13 nm in the stacking-fault regions. Interestingly, selective area electron diffraction (SAED) of the latter revealed unusual doubled electron diffraction patterns. Stabilization of micron-scale stacking-faults of crystalline rhombohedral graphite (ABC stacking) was found as an additional transition, when applying the lifting approach to staircase-defects. Comparative investigations performed on commercially available grafoil revealed a different trend, with the presence of a disorder-rich rhombohedral graphitic phase compatible with a defective A|ABAB|BCBC|CACA|A stacking-sequence, analogous to that reported previously in other grafoil samples and in nitrates intercalated graphite.
AB - Understanding the stabilization of rhombohedral stacking-order and moiré superlattices in structural defects produced by exfoliation is of importance towards applications in nanoscale low-dimensional systems and superconductivity. Here we report a statistical investigation of the stabilization-dynamics of rhombohedral ABC stacking-faults within locally-lifted sublattices, fabricated by exfoliation of highly oriented pyrolytic graphite (HOPG). Raman point/mapping spectroscopy applied to several tens of locally-lifted lattice-regions reveal a weak enhancement of the ratio of the integral area of the 2D band-components, namely within the frequency range from ∼2550 to 2670 cm−1 (left shoulder) to that from ∼2670 to 2760 cm−1 (right shoulder). A structural transition is demonstrated with HRTEM revealing the coexistence of hexagonal and one-dimensional moiré superlattices with periods D-1–2.04 nm, D-2–2.35 nm (coexisting superlattice-periodicities) and D ∼ 13 nm in the stacking-fault regions. Interestingly, selective area electron diffraction (SAED) of the latter revealed unusual doubled electron diffraction patterns. Stabilization of micron-scale stacking-faults of crystalline rhombohedral graphite (ABC stacking) was found as an additional transition, when applying the lifting approach to staircase-defects. Comparative investigations performed on commercially available grafoil revealed a different trend, with the presence of a disorder-rich rhombohedral graphitic phase compatible with a defective A|ABAB|BCBC|CACA|A stacking-sequence, analogous to that reported previously in other grafoil samples and in nitrates intercalated graphite.
KW - Exfoliated graphite
KW - Moire' superlattice
KW - Rhombohedral stacking-order
KW - Stacking-faults
UR - http://www.scopus.com/inward/record.url?scp=105000042081&partnerID=8YFLogxK
U2 - 10.1016/j.diamond.2025.112212
DO - 10.1016/j.diamond.2025.112212
M3 - Article
AN - SCOPUS:105000042081
SN - 0925-9635
VL - 154
JO - Diamond and Related Materials
JF - Diamond and Related Materials
M1 - 112212
ER -