TY - JOUR
T1 - Spatial representativeness of PM2.5 monitoring stations and its implication for health assessment
AU - Bai, Heming
AU - Yan, Rusha
AU - Gao, Wenkang
AU - Wei, Jing
AU - Seong, Myeongsu
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2022
Y1 - 2022
N2 - Air pollution measurements from monitoring stations are widely used in health assessment, and it is important to take into account the spatial representativeness (SR) of stations when quantifying population exposure to air pollution measured in these stations. Using high-quality satellite-derived PM2.5 data with 1-km spatial resolution over Yangtze River Delta (YRD) from 2016 to 2020, this study estimates SR of 213 PM2.5 monitoring stations, and these SR estimates are further used to calculate annual population-weighted mean (PWM) PM2.5 and deaths attributable to PM2.5 exposure for each city in YRD. Our results show that SR areas of 213 stations totally account for 32.33% of the area of YRD, and the SR size varies greatly with stations. Additionally, we find that the city-level PWM PM2.5 based on SR is nearly always larger than that using full coverage satellite-derived data. The difference tends to decrease as the population ratio of SR area increases. For the entire YRD, attributable deaths using PWM PM2.5 based on SR are 182,009 (95% CI: 136,632–225,081), and are comparable to the ones derived using full-coverage satellite-derived data. Nevertheless, the relative change in attributable deaths is more than 6% in some cities due to the low population ratio of SR (less than 20%), which suggests that more monitoring stations should be deployed in these cities for human assessment.
AB - Air pollution measurements from monitoring stations are widely used in health assessment, and it is important to take into account the spatial representativeness (SR) of stations when quantifying population exposure to air pollution measured in these stations. Using high-quality satellite-derived PM2.5 data with 1-km spatial resolution over Yangtze River Delta (YRD) from 2016 to 2020, this study estimates SR of 213 PM2.5 monitoring stations, and these SR estimates are further used to calculate annual population-weighted mean (PWM) PM2.5 and deaths attributable to PM2.5 exposure for each city in YRD. Our results show that SR areas of 213 stations totally account for 32.33% of the area of YRD, and the SR size varies greatly with stations. Additionally, we find that the city-level PWM PM2.5 based on SR is nearly always larger than that using full coverage satellite-derived data. The difference tends to decrease as the population ratio of SR area increases. For the entire YRD, attributable deaths using PWM PM2.5 based on SR are 182,009 (95% CI: 136,632–225,081), and are comparable to the ones derived using full-coverage satellite-derived data. Nevertheless, the relative change in attributable deaths is more than 6% in some cities due to the low population ratio of SR (less than 20%), which suggests that more monitoring stations should be deployed in these cities for human assessment.
KW - Health assessment
KW - Monitoring stations
KW - PM2.5
KW - Satellite remote sensing
KW - Spatial representativeness
UR - http://www.scopus.com/inward/record.url?scp=85129735541&partnerID=8YFLogxK
U2 - 10.1007/s11869-022-01202-2
DO - 10.1007/s11869-022-01202-2
M3 - Article
AN - SCOPUS:85129735541
SN - 1873-9318
JO - Air Quality, Atmosphere and Health
JF - Air Quality, Atmosphere and Health
ER -