Source-Free Domain Adaptation for Medical Image Segmentation via Prototype-Anchored Feature Alignment and Contrastive Learning

Qinji Yu, Nan Xi, Junsong Yuan, Ziyu Zhou, Kang Dang, Xiaowei Ding*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

4 Citations (Scopus)

Abstract

Unsupervised domain adaptation (UDA) has increasingly gained interests for its capacity to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. However, typical UDA methods require concurrent access to both the source and target domain data, which largely limits its application in medical scenarios where source data is often unavailable due to privacy concern. To tackle the source data-absent problem, we present a novel two-stage source-free domain adaptation (SFDA) framework for medical image segmentation, where only a well-trained source segmentation model and unlabeled target data are available during domain adaptation. Specifically, in the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes, which preserve the information of source features. Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost. On top of that, a contrastive learning stage is further devised to utilize those pixels with unreliable predictions for a more compact target feature distribution. Extensive experiments on a cross-modality medical segmentation task demonstrate the superiority of our method in large domain discrepancy settings compared with the state-of-the-art SFDA approaches and even some UDA methods. Code is available at: https://github.com/CSCYQJ/MICCAI23-ProtoContra-SFDA.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3-12
Number of pages10
ISBN (Print)9783031439896
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14226 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Contrastive learning
  • Domain adaptation
  • Source-free

Fingerprint

Dive into the research topics of 'Source-Free Domain Adaptation for Medical Image Segmentation via Prototype-Anchored Feature Alignment and Contrastive Learning'. Together they form a unique fingerprint.

Cite this