TY - JOUR
T1 - SNARE Proteins Mediate α-Synuclein Secretion via Multiple Vesicular Pathways
AU - Zhao, Xiaofang
AU - Guan, Yuan
AU - Liu, Fengwei
AU - Yan, Shuxin
AU - Wang, Yalong
AU - Hu, Meiqin
AU - Li, Yuhong
AU - Li, Rena
AU - Zhang, Claire Xi
N1 - Funding Information:
This work was supported by Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201510025023); the National Natural Science Foundation of China (31471085, 91849103, 81671248); and Chaoyang District Science and Technology Plan Project (CYSF-1933).
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/1
Y1 - 2022/1
N2 - The cell-to-cell transmission of pathological α-synuclein (α-syn) has been proposed to be a critical event in the development of synucleinopathies. Recent studies have begun to reveal the underlying molecular mechanism of α-syn propagation. As one of the central steps, α-syn secretion is reported to be Ca2+-dependent and mediated by unconventional exocytosis. However, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) requirement and vesicle identity of α-syn secretion remain elusive. Here we found that α-syn secretion is SNARE-dependent by systematically knocking down Q-SNAREs and R-SNAREs in exocytosis pathways. α-Syn secretion was mainly mediated by syntaxin 4 (STX4) and synaptosomal-associated protein 23 (SNAP23), but did not require STX1 and SNAP25, in differentiated SH-SY5Y cells. On the other hand, vesicle-associated membrane protein 3 (VAMP3), VAMP7, and VAMP8 were all involved in α-syn secretion, most likely in overlapping pathways. Application of super-resolution microscopy revealed localization of both endogenous and overexpressed α-syn in endosomes, lysosomes, and autophagosomes in rat primary cortical neurons. α-Syn co-localized with microtubule-associated protein 1 light chain 3 (LC3) most extensively, suggesting its tight association with the autophagy pathway. Consistently, α-syn secretion was regulated by the autophagy-lysosome pathway. Collectively, our data suggest that α-syn secretion is SNARE-dependent and is mediated by multiple vesicular pathways including exocytosis of recycling endosomes, multivesicular bodies, autophagosomes, and lysosomes.
AB - The cell-to-cell transmission of pathological α-synuclein (α-syn) has been proposed to be a critical event in the development of synucleinopathies. Recent studies have begun to reveal the underlying molecular mechanism of α-syn propagation. As one of the central steps, α-syn secretion is reported to be Ca2+-dependent and mediated by unconventional exocytosis. However, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) requirement and vesicle identity of α-syn secretion remain elusive. Here we found that α-syn secretion is SNARE-dependent by systematically knocking down Q-SNAREs and R-SNAREs in exocytosis pathways. α-Syn secretion was mainly mediated by syntaxin 4 (STX4) and synaptosomal-associated protein 23 (SNAP23), but did not require STX1 and SNAP25, in differentiated SH-SY5Y cells. On the other hand, vesicle-associated membrane protein 3 (VAMP3), VAMP7, and VAMP8 were all involved in α-syn secretion, most likely in overlapping pathways. Application of super-resolution microscopy revealed localization of both endogenous and overexpressed α-syn in endosomes, lysosomes, and autophagosomes in rat primary cortical neurons. α-Syn co-localized with microtubule-associated protein 1 light chain 3 (LC3) most extensively, suggesting its tight association with the autophagy pathway. Consistently, α-syn secretion was regulated by the autophagy-lysosome pathway. Collectively, our data suggest that α-syn secretion is SNARE-dependent and is mediated by multiple vesicular pathways including exocytosis of recycling endosomes, multivesicular bodies, autophagosomes, and lysosomes.
KW - Autophagosome
KW - Endosome
KW - Exocytosis
KW - Lysosome
KW - SNARE
KW - α-Synuclein
UR - http://www.scopus.com/inward/record.url?scp=85117953655&partnerID=8YFLogxK
U2 - 10.1007/s12035-021-02599-0
DO - 10.1007/s12035-021-02599-0
M3 - Article
C2 - 34705229
AN - SCOPUS:85117953655
SN - 0893-7648
VL - 59
SP - 405
EP - 419
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 1
ER -