TY - JOUR
T1 - Selenium Effect Threshold for Soil Nematodes Under Rice Biofortification
AU - Song, Jiaping
AU - Liu, Xiaodong
AU - Wang, Zhangmin
AU - Zhang, Zezhou
AU - Chen, Qingqing
AU - Lin, Zhi Qing
AU - Yuan, Linxi
AU - Yin, Xuebin
N1 - Publisher Copyright:
Copyright © 2022 Song, Liu, Wang, Zhang, Chen, Lin, Yuan and Yin.
PY - 2022/5/11
Y1 - 2022/5/11
N2 - Crop biofortification with inorganic selenium (Se) fertilizer is a feasible strategy to improve the health of residents in Se-deficient areas. For eco-friendly crop Se biofortification, a comprehensive understanding of the effects of Se on crop and soil nematodes is vital. In this study, a rice pot experiment was carried out to test how selenite supply (untreated control (0), 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, or 200 mg Se kg−1) in soil affected rice growth, rice Se accumulation, and soil nematode abundance and composition. The results showed that selenite supply (5–200 mg kg−1) generally increased the number of rice tillers, rice yield, and Se concentrations in rice grains. In soil under 10 mg kg−1 Se treatment, the genus composition of nematodes changed significantly compared with that in the control soil. With increased Se level (> 10 mg kg−1), soil nematode abundance decreased significantly. Correlation analysis also demonstrated the positive relationships between soil Se concentrations (total Se and bioavailable Se) with rice plant parameters (number of rice tillers, rice yield, and grain Se concentration) and negative relationships between soil Se concentrations (total Se and bioavailable Se) with soil nematode indexes (nematode abundance and relative abundance of Tobrilus). This study provides insight into balancing Se biofortification of rice and soil nematode community protection and suggests the effective concentrations for total Se (1.45 mg kg−1) and bioavailable Se (0.21 mg kg−1) to soil nematode abundances at 20% level (EC20) as soil Se thresholds. At Se concentrations below these thresholds, rice plant growth and Se accumulation in the grain will still be promoted, but the disturbance of the soil nematodes would be negligible.
AB - Crop biofortification with inorganic selenium (Se) fertilizer is a feasible strategy to improve the health of residents in Se-deficient areas. For eco-friendly crop Se biofortification, a comprehensive understanding of the effects of Se on crop and soil nematodes is vital. In this study, a rice pot experiment was carried out to test how selenite supply (untreated control (0), 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, or 200 mg Se kg−1) in soil affected rice growth, rice Se accumulation, and soil nematode abundance and composition. The results showed that selenite supply (5–200 mg kg−1) generally increased the number of rice tillers, rice yield, and Se concentrations in rice grains. In soil under 10 mg kg−1 Se treatment, the genus composition of nematodes changed significantly compared with that in the control soil. With increased Se level (> 10 mg kg−1), soil nematode abundance decreased significantly. Correlation analysis also demonstrated the positive relationships between soil Se concentrations (total Se and bioavailable Se) with rice plant parameters (number of rice tillers, rice yield, and grain Se concentration) and negative relationships between soil Se concentrations (total Se and bioavailable Se) with soil nematode indexes (nematode abundance and relative abundance of Tobrilus). This study provides insight into balancing Se biofortification of rice and soil nematode community protection and suggests the effective concentrations for total Se (1.45 mg kg−1) and bioavailable Se (0.21 mg kg−1) to soil nematode abundances at 20% level (EC20) as soil Se thresholds. At Se concentrations below these thresholds, rice plant growth and Se accumulation in the grain will still be promoted, but the disturbance of the soil nematodes would be negligible.
KW - biofortification
KW - nematodes
KW - rhizosphere
KW - rice
KW - selenium
KW - threshold
UR - http://www.scopus.com/inward/record.url?scp=85130978118&partnerID=8YFLogxK
U2 - 10.3389/fpls.2022.889459
DO - 10.3389/fpls.2022.889459
M3 - Article
AN - SCOPUS:85130978118
SN - 1664-462X
VL - 13
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 889459
ER -