TY - JOUR
T1 - Secrecy Performance Analysis of Artificial Noise Aided Precoding in Full-Duplex Relay Systems
AU - Li, Yuanjian
AU - Zhao, Rui
AU - Tan, Xing
AU - Nie, Zhiqiao
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017
Y1 - 2017
N2 - In Rayleigh fading channels, we investigate the secrecy performance of a full-duplex relay secure transmission system. To improve the secrecy capacity of the system and efficiently interfere the interception of the eavesdropper, the multiple-antenna source applies the artificial noise aided precoding (ANP) scheme to broadcast the intended signal and the artificial noise simultaneously, and the decode-and-forward relay operates in full- duplex mode. To improve the received signal-to-noise ratio (SNR), the multiple-antenna destination applies maximum ratio combining (MRC) strategy. In the presence of self-interference at the relay, the approximate closed-form expression of ergodic achievable secrecy rate (EASR) for any values of antenna number and the exact closed-form expression of EASR for large-scale antennas array were derived respectively. Both the theoretical analysis and numerical simulations show that the ANP combined with full-duplex scheme can achieve considerable secrecy performance gain.
AB - In Rayleigh fading channels, we investigate the secrecy performance of a full-duplex relay secure transmission system. To improve the secrecy capacity of the system and efficiently interfere the interception of the eavesdropper, the multiple-antenna source applies the artificial noise aided precoding (ANP) scheme to broadcast the intended signal and the artificial noise simultaneously, and the decode-and-forward relay operates in full- duplex mode. To improve the received signal-to-noise ratio (SNR), the multiple-antenna destination applies maximum ratio combining (MRC) strategy. In the presence of self-interference at the relay, the approximate closed-form expression of ergodic achievable secrecy rate (EASR) for any values of antenna number and the exact closed-form expression of EASR for large-scale antennas array were derived respectively. Both the theoretical analysis and numerical simulations show that the ANP combined with full-duplex scheme can achieve considerable secrecy performance gain.
UR - http://www.scopus.com/inward/record.url?scp=85046351778&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2017.8254504
DO - 10.1109/GLOCOM.2017.8254504
M3 - Conference article
AN - SCOPUS:85046351778
SN - 2334-0983
VL - 2018-January
SP - 1
EP - 6
JO - Proceedings - IEEE Global Communications Conference, GLOBECOM
JF - Proceedings - IEEE Global Communications Conference, GLOBECOM
T2 - 2017 IEEE Global Communications Conference, GLOBECOM 2017
Y2 - 4 December 2017 through 8 December 2017
ER -