TY - GEN
T1 - RouteFlow
T2 - 2025 CHI Conference on Human Factors in Computing Systems, CHI 2025
AU - Li, Duan
AU - Guo, Xinyuan
AU - Shu, Xinhuan
AU - Xiao, Lanxi
AU - Yu, Lingyun
AU - Liu, Shixia
N1 - Publisher Copyright:
© 2025 Copyright held by the owner/author(s).
PY - 2025/4/26
Y1 - 2025/4/26
N2 - Animating objects' movements is widely used to facilitate tracking changes and observing both the global trend and local hotspots where objects converge or diverge. Existing methods, however, often obscure critical local hotspots by only considering the start and end positions of objects' trajectories. To address this gap, we propose RouteFlow, a trajectory-aware animated transition method that effectively balances the global trend and local hotspots while minimizing occlusion. RouteFlow is inspired by a real-world bus route analogy: objects are regarded as passengers traveling together, with local hotspots representing bus stops where these passengers get on and off. Based on this analogy, animation paths are generated like bus routes, with the object layout generated similarly to seat allocation according to their destinations. Compared with state-of-the-art methods, RouteFlow better facilitates identifying the global trend and locating local hotspots while performing comparably in tracking objects' movements.
AB - Animating objects' movements is widely used to facilitate tracking changes and observing both the global trend and local hotspots where objects converge or diverge. Existing methods, however, often obscure critical local hotspots by only considering the start and end positions of objects' trajectories. To address this gap, we propose RouteFlow, a trajectory-aware animated transition method that effectively balances the global trend and local hotspots while minimizing occlusion. RouteFlow is inspired by a real-world bus route analogy: objects are regarded as passengers traveling together, with local hotspots representing bus stops where these passengers get on and off. Based on this analogy, animation paths are generated like bus routes, with the object layout generated similarly to seat allocation according to their destinations. Compared with state-of-the-art methods, RouteFlow better facilitates identifying the global trend and locating local hotspots while performing comparably in tracking objects' movements.
KW - animation
KW - edge bundling
KW - trajectory data
UR - http://www.scopus.com/inward/record.url?scp=105005729623&partnerID=8YFLogxK
U2 - 10.1145/3706598.3714300
DO - 10.1145/3706598.3714300
M3 - Conference Proceeding
AN - SCOPUS:105005729623
T3 - Conference on Human Factors in Computing Systems - Proceedings
BT - CHI 2025 - Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
PB - Association for Computing Machinery
Y2 - 26 April 2025 through 1 May 2025
ER -