TY - JOUR
T1 - ROENet
T2 - A ResNet-Based Output Ensemble for Malaria Parasite Classification
AU - Zhu, Ziquan
AU - Wang, Shuihua
AU - Zhang, Yudong
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - (1) Background: People may be infected with an insect-borne disease (malaria) through the blood input of malaria-infected people or the bite of Anopheles mosquitoes. Doctors need a lot of time and energy to diagnose malaria, and sometimes the results are not ideal. Many researchers use CNN to classify malaria images. However, we believe that the classification performance of malaria parasites can be improved. (2) Methods: In this paper, we propose a novel method (ROENet) to automatically classify malaria parasite on the blood smear. The backbone of ROENet is the pre-trained ResNet-18. We use randomized neural networks (RNNs) as the classifier in our proposed model. Three RNNs are used in ROENet, which are random vector functional link (RVFL), Schmidt neural network (SNN), and extreme learning machine (ELM). To improve the performance of ROENet, the results of ROENet are the ensemble outputs from three RNNs. (3) Results: We evaluate the proposed ROENet by five-fold cross-validation. The specificity, F1 score, sensitivity, and accuracy are 96.68 ± 3.81%, 95.69 ± 2.65%, 94.79 ± 3.71%, and 95.73 ± 2.63%, respectively. (4) Conclusions: The proposed ROENet is compared with other state-of-the-art methods and provides the best results of these methods.
AB - (1) Background: People may be infected with an insect-borne disease (malaria) through the blood input of malaria-infected people or the bite of Anopheles mosquitoes. Doctors need a lot of time and energy to diagnose malaria, and sometimes the results are not ideal. Many researchers use CNN to classify malaria images. However, we believe that the classification performance of malaria parasites can be improved. (2) Methods: In this paper, we propose a novel method (ROENet) to automatically classify malaria parasite on the blood smear. The backbone of ROENet is the pre-trained ResNet-18. We use randomized neural networks (RNNs) as the classifier in our proposed model. Three RNNs are used in ROENet, which are random vector functional link (RVFL), Schmidt neural network (SNN), and extreme learning machine (ELM). To improve the performance of ROENet, the results of ROENet are the ensemble outputs from three RNNs. (3) Results: We evaluate the proposed ROENet by five-fold cross-validation. The specificity, F1 score, sensitivity, and accuracy are 96.68 ± 3.81%, 95.69 ± 2.65%, 94.79 ± 3.71%, and 95.73 ± 2.63%, respectively. (4) Conclusions: The proposed ROENet is compared with other state-of-the-art methods and provides the best results of these methods.
KW - ResNet-18
KW - blood smear
KW - convolutional neural network
KW - malaria
KW - output ensemble
KW - randomized neural network
UR - http://www.scopus.com/inward/record.url?scp=85133016789&partnerID=8YFLogxK
U2 - 10.3390/electronics11132040
DO - 10.3390/electronics11132040
M3 - Article
AN - SCOPUS:85133016789
SN - 2079-9292
VL - 11
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 13
M1 - 2040
ER -