Reliability does matter: An end-to-end weakly supervised semantic segmentation approach

Bingfeng Zhang, Jimin Xiao*, Yunchao Wei, Mingjie Sun, Kaizhu Huang

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

145 Citations (Scopus)

Abstract

Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, i.e. 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (val: 62.6, test: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (val: 66.3, test: 66.5).

Original languageEnglish
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages12765-12772
Number of pages8
ISBN (Electronic)9781577358350
Publication statusPublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: 7 Feb 202012 Feb 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period7/02/2012/02/20

Fingerprint

Dive into the research topics of 'Reliability does matter: An end-to-end weakly supervised semantic segmentation approach'. Together they form a unique fingerprint.

Cite this