Region and Spatial Aware Anomaly Detection for Fundus Images

Jingqi Niu, Shiwen Dong, Qinji Yu, Kang Dang*, Xiaowei Ding*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Recently anomaly detection has drawn much attention in diagnosing ocular diseases. Most existing anomaly detection research in fundus images has relatively large anomaly scores in the salient retinal structures, such as blood vessels, optical cups and discs. In this paper, we propose a Region and Spatial Aware Anomaly Detection (ReSAD) method for fundus images, which obtains local region and long-range spatial information to reduce the false positives in the normal structure. ReSAD transfers a pre-trained model to extract the features of normal fundus images and applies the Region-and-Spatial-Aware feature Combination module (ReSC) for pixel-level features to build a memory bank. In the testing phase, ReSAD uses the memory bank to determine out-of-distribution samples as abnormalities. Our method significantly outperforms the existing anomaly detection methods for fundus images on two publicly benchmark datasets.

Original languageEnglish
Title of host publication2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665473583
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
Duration: 18 Apr 202321 Apr 2023

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2023-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Country/TerritoryColombia
CityCartagena
Period18/04/2321/04/23

Keywords

  • Anomaly Detection
  • Fundus Image
  • Transfer Learning

Fingerprint

Dive into the research topics of 'Region and Spatial Aware Anomaly Detection for Fundus Images'. Together they form a unique fingerprint.

Cite this