Rationally designed CuSb1- xBixS2 as a promising photovoltaic material: Theoretical and experimental study

Bo In Park, Minyeong Je, Jihun Oh*, Heechae Choi, Seung Yong Lee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Here we report the miscibility gap of CuSb1- xBixS2 (CABS), a promising photo energy conversion material for band gap engineered solar cells, and evaluate its applicability via a combination of theoretical predictions and experimental verifications. Our ab initio calculations and thermodynamic modeling revealed that the CABS random alloy system has optimal band gap values in the range of 1.1–1.5 eV when synthesized at room temperature. The CABS system, synthesized by mechanochemical methods, exhibited optical band gap values in very good agreement with theoretical predictions, as well as lowered kinetic energy barriers for enhanced nucleation.

Original languageEnglish
Pages (from-to)107-112
Number of pages6
JournalScripta Materialia
Volume179
DOIs
Publication statusPublished - 1 Apr 2020
Externally publishedYes

Keywords

  • Chalcogenide
  • I–V–VI
  • Mechanochemical method
  • Photovoltaic materials
  • Solar cells

Fingerprint

Dive into the research topics of 'Rationally designed CuSb1- xBixS2 as a promising photovoltaic material: Theoretical and experimental study'. Together they form a unique fingerprint.

Cite this