Quantum Drinfeld modules and ray class fields of real quadratic global function fields

L. Demangos, T. M. Gendron*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This is the second in a series of two papers presenting a solution to Hilbert’s 12th problem for real quadratic function fields in positive characteristic, in the sense of proving an analog of the Theorem of Weber-Fueter. We also offer a conjectural treatment of the number field case using quasicrystal counterparts (Gendron et al. in Théorie Quasi-cristalline des Nombres: Recherche d’une Théorie de Drinfeld-Hayes en Caractéristique Zéro. arXiv: 1912.12323) of the constructions used in function fields.

Original languageEnglish
Article number32
JournalResearch in Mathematical Sciences
Volume12
Issue number2
DOIs
Publication statusPublished - Jun 2025

Keywords

  • Function field arithmetic
  • Quantum Drinfeld module
  • Ray class field

Fingerprint

Dive into the research topics of 'Quantum Drinfeld modules and ray class fields of real quadratic global function fields'. Together they form a unique fingerprint.

Cite this