TY - JOUR
T1 - Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis
AU - Zhao, Heng
AU - Pflug, Beth R.
AU - Lai, Xianyin
AU - Wang, Mu
N1 - Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation.
AB - Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation.
KW - Biomedicine
KW - Fish oil
KW - Phosphoproteomics
KW - Prostate cancer
KW - Pyruvate dehydrogenase
KW - Unsaturated fatty acids
UR - http://www.scopus.com/inward/record.url?scp=84985931275&partnerID=8YFLogxK
U2 - 10.1002/pmic.201600166
DO - 10.1002/pmic.201600166
M3 - Article
C2 - 27357730
AN - SCOPUS:84985931275
SN - 1615-9853
VL - 16
SP - 2419
EP - 2431
JO - Proteomics
JF - Proteomics
IS - 17
ER -