Provably secure password authenticated key exchange based on RLWE for the post-quantum world

Jintai Ding*, Saed Alsayigh, Jean Lancrenon, Saraswathy Rv, Michael Snook

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingChapterpeer-review

91 Citations (Scopus)

Abstract

Authenticated Key Exchange (AKE) is a cryptographic scheme with the aim to establish a high-entropy and secret session key over a insecure communications network. Password-Authenticated Key Exchange (PAKE) assumes that the parties in play share a simple password, which is cheap and human-memorable and is used to achieve the authentication. PAKEs are practically relevant as these features are extremely appealing in an age where most people access sensitive personal data remotely from more-and-more pervasive hand-held devices. Theoretically, PAKEs allow the secure computation and authentication of a high-entropy piece of data using a low-entropy string as a starting point. In this paper, we apply the recently proposed technique introduced in [19] to construct two lattice-based PAKE protocols enjoying a very simple and elegant design that is an parallel extension of the class of Random Oracle Model (ROM)-based protocols PAK and PPK [13,41], but in the lattice-based setting. The new protocol resembling PAK is three-pass, and provides mutual explicit authentication, while the protocol following the structure of PPK is two-pass, and provides implicit authentication. Our protocols rely on the Ring-Learning-with-Errors (RLWE) assumption, and exploit the additive structure of the underlying ring. They have a comparable level of efficiency to PAK and PPK, which makes them highly attractive. We present a preliminary implementation of our protocols to demonstrate that they are both efficient and practical. We believe they are suitable quantum safe replacements for PAK and PPK.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer Verlag
Pages183-204
Number of pages22
DOIs
Publication statusPublished - 1 Jan 2017
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10159
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Keywords

  • Authenticated
  • Diffie-hellman
  • Key exchange
  • PAKE
  • RLWE

Fingerprint

Dive into the research topics of 'Provably secure password authenticated key exchange based on RLWE for the post-quantum world'. Together they form a unique fingerprint.

Cite this