TY - GEN
T1 - Prototype learning with margin-based conditional log-likelihood loss
AU - Jin, Xiaobo
AU - Liu, Cheng Lin
AU - Hou, Xinwen
PY - 2008
Y1 - 2008
N2 - The classification performance of nearest prototype classifiers largely relies on the prototype learning algorithms, such as the learning vector quantization (LVQ) and the minimum classification error (MCE). This paper proposes a new prototype learning algorithm based on the minimization of a conditional log-likelihood loss (CLL), called log-likelihood of margin (LOGM). A regularization term is added to avoid over-fitting in training. The CLL loss in LOGM is a convex function of margin, and so, gives better convergence than the MCE algorithm. Our empirical study on a large suite of benchmark datasets demonstrates that the proposed algorithm yields higher accuracies than the MCE, the generalized LVQ (GLVQ), and the soft nearest prototype classifier (SNPC).
AB - The classification performance of nearest prototype classifiers largely relies on the prototype learning algorithms, such as the learning vector quantization (LVQ) and the minimum classification error (MCE). This paper proposes a new prototype learning algorithm based on the minimization of a conditional log-likelihood loss (CLL), called log-likelihood of margin (LOGM). A regularization term is added to avoid over-fitting in training. The CLL loss in LOGM is a convex function of margin, and so, gives better convergence than the MCE algorithm. Our empirical study on a large suite of benchmark datasets demonstrates that the proposed algorithm yields higher accuracies than the MCE, the generalized LVQ (GLVQ), and the soft nearest prototype classifier (SNPC).
UR - http://www.scopus.com/inward/record.url?scp=77957921562&partnerID=8YFLogxK
M3 - Conference Proceeding
AN - SCOPUS:77957921562
SN - 9781424421756
T3 - Proceedings - International Conference on Pattern Recognition
BT - 2008 19th International Conference on Pattern Recognition, ICPR 2008
T2 - 2008 19th International Conference on Pattern Recognition, ICPR 2008
Y2 - 8 December 2008 through 11 December 2008
ER -