TY - JOUR
T1 - Power ramp-rates of utility-scale PV systems under passing clouds
T2 - Module-level emulation with cloud shadow modeling
AU - Chen, Xiaoyang
AU - Du, Yang
AU - Lim, Enggee
AU - Wen, Huiqing
AU - Yan, Ke
AU - Kirtley, James
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/6/15
Y1 - 2020/6/15
N2 - The short-term power output variability of solar photovoltaic (PV) systems caused by passing clouds is becoming a major concern for grid operators. As the penetration of utility-scale PV systems boosts, the rapid power fluctuations greatly challenge the grid transient stability. In this regard, the concept of power ramp-rate (RR) has been recently imposed to quantify the PV fluctuations, and a series of ramp regulations are implemented by utilities. However, due to the limitations in terms of high-resolution simulation of utility-scale PV systems and reproducing cloud shadow natures, current studies still show deficiencies in comprehensively investigating the RRs rising from both endogenous and exogenous factors during cloud shadow transitions. With the objective of producing high-resolution and high-accuracy emulations of utility-scale PV systems under passing clouds, thus providing a clearer understanding on the cloud-induced RRs, this paper first sets forth a partial shading emulator that is capable of efficiently mimicking the behaviors of an arbitrary partially shaded PV system, in accuracy of the PV module level. Then a fully customizable shadow model that can reproduce the natures of a real cloud shadow is introduced. Based on the developed emulation tools, the effects of two endogenous factors i.e., PV array arrangement and system orientation, and three exogenous factors i.e., shadow intensity, shadow velocity, and shadow size on RRs are explored for a range of utility-scale PV systems from 1 MW to 60 MW. Furthermore, in order to assess the RRs in reality, a total of 3747 cloud shadow transitions exploited from real measurements have been applied for emulations. The results reveal that the RRs caused by passing clouds are critical problems for system operations, and a larger system can suffer more from ramp violations, indicating that the advanced ramp control strategies should be essential for contemporary utility-scale PV systems.
AB - The short-term power output variability of solar photovoltaic (PV) systems caused by passing clouds is becoming a major concern for grid operators. As the penetration of utility-scale PV systems boosts, the rapid power fluctuations greatly challenge the grid transient stability. In this regard, the concept of power ramp-rate (RR) has been recently imposed to quantify the PV fluctuations, and a series of ramp regulations are implemented by utilities. However, due to the limitations in terms of high-resolution simulation of utility-scale PV systems and reproducing cloud shadow natures, current studies still show deficiencies in comprehensively investigating the RRs rising from both endogenous and exogenous factors during cloud shadow transitions. With the objective of producing high-resolution and high-accuracy emulations of utility-scale PV systems under passing clouds, thus providing a clearer understanding on the cloud-induced RRs, this paper first sets forth a partial shading emulator that is capable of efficiently mimicking the behaviors of an arbitrary partially shaded PV system, in accuracy of the PV module level. Then a fully customizable shadow model that can reproduce the natures of a real cloud shadow is introduced. Based on the developed emulation tools, the effects of two endogenous factors i.e., PV array arrangement and system orientation, and three exogenous factors i.e., shadow intensity, shadow velocity, and shadow size on RRs are explored for a range of utility-scale PV systems from 1 MW to 60 MW. Furthermore, in order to assess the RRs in reality, a total of 3747 cloud shadow transitions exploited from real measurements have been applied for emulations. The results reveal that the RRs caused by passing clouds are critical problems for system operations, and a larger system can suffer more from ramp violations, indicating that the advanced ramp control strategies should be essential for contemporary utility-scale PV systems.
KW - Cloud shadow modeling
KW - Partial shading
KW - Photovoltaic
KW - Ramp-rate
KW - Solar variability
UR - http://www.scopus.com/inward/record.url?scp=85084853486&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2020.114980
DO - 10.1016/j.apenergy.2020.114980
M3 - Article
AN - SCOPUS:85084853486
SN - 0306-2619
VL - 268
JO - Applied Energy
JF - Applied Energy
M1 - 114980
ER -