Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling

Xiaoyang Chen, Yang Du*, Enggee Lim, Huiqing Wen, Ke Yan, James Kirtley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

The short-term power output variability of solar photovoltaic (PV) systems caused by passing clouds is becoming a major concern for grid operators. As the penetration of utility-scale PV systems boosts, the rapid power fluctuations greatly challenge the grid transient stability. In this regard, the concept of power ramp-rate (RR) has been recently imposed to quantify the PV fluctuations, and a series of ramp regulations are implemented by utilities. However, due to the limitations in terms of high-resolution simulation of utility-scale PV systems and reproducing cloud shadow natures, current studies still show deficiencies in comprehensively investigating the RRs rising from both endogenous and exogenous factors during cloud shadow transitions. With the objective of producing high-resolution and high-accuracy emulations of utility-scale PV systems under passing clouds, thus providing a clearer understanding on the cloud-induced RRs, this paper first sets forth a partial shading emulator that is capable of efficiently mimicking the behaviors of an arbitrary partially shaded PV system, in accuracy of the PV module level. Then a fully customizable shadow model that can reproduce the natures of a real cloud shadow is introduced. Based on the developed emulation tools, the effects of two endogenous factors i.e., PV array arrangement and system orientation, and three exogenous factors i.e., shadow intensity, shadow velocity, and shadow size on RRs are explored for a range of utility-scale PV systems from 1 MW to 60 MW. Furthermore, in order to assess the RRs in reality, a total of 3747 cloud shadow transitions exploited from real measurements have been applied for emulations. The results reveal that the RRs caused by passing clouds are critical problems for system operations, and a larger system can suffer more from ramp violations, indicating that the advanced ramp control strategies should be essential for contemporary utility-scale PV systems.

Original languageEnglish
Article number114980
JournalApplied Energy
Volume268
DOIs
Publication statusPublished - 15 Jun 2020

Keywords

  • Cloud shadow modeling
  • Partial shading
  • Photovoltaic
  • Ramp-rate
  • Solar variability

Cite this