TY - GEN
T1 - Pose-robust face recognition by deep meta capsule network-based equivariant embedding
AU - Wu, Fangyu
AU - Smith, Jeremy S.
AU - Lu, Wenjin
AU - Zhang, Bailing
N1 - Publisher Copyright:
© 2020 IEEE
PY - 2020
Y1 - 2020
N2 - Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.
AB - Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.
UR - http://www.scopus.com/inward/record.url?scp=85110538372&partnerID=8YFLogxK
U2 - 10.1109/ICPR48806.2021.9412013
DO - 10.1109/ICPR48806.2021.9412013
M3 - Conference Proceeding
AN - SCOPUS:85110538372
T3 - Proceedings - International Conference on Pattern Recognition
SP - 8695
EP - 8702
BT - Proceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th International Conference on Pattern Recognition, ICPR 2020
Y2 - 10 January 2021 through 15 January 2021
ER -