Placental Element Content Assessed via Synchrotron-Based X-ray Fluorescence Microscopy Identifies Low Molybdenum Concentrations in Foetal Growth Restriction, Postdate Delivery and Stillbirth

Vladimira Foteva*, Kaushik Maiti, Joshua J. Fisher, Yixue Qiao, David J. Paterson, Michael W.M. Jones, Roger Smith

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Placental health and foetal development are dependent upon element homeostasis. Analytical techniques such as mass spectroscopy can provide quantitative data on element concentrations in placental tissue but do not show spatial distribution or co-localisation of elements that may affect placental function. The present study used synchrotron-based X-ray fluorescence microscopy to elucidate element content and distribution in healthy and pathological placental tissue. The X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron was used to image trace metal content of 19 placental sections from healthy term (n = 5, 37–39 weeks), foetal growth-restricted (n = 3, <32 weeks, birth weight <3rd centile), postdate (n = 7, >41 completed weeks), and stillbirth-complicated pregnancies (n = 4, 37–40 weeks). Samples were cryo-sectioned and freeze-dried. The concentration and distribution of fourteen elements were detected in all samples: arsenic, bromine, calcium, chlorine, copper, iron, molybdenum, phosphorous, potassium, rubidium, selenium, strontium, sulphur, and zinc. The elements zinc, calcium, phosphorous, and strontium were significantly increased in stillbirth placental tissue in comparison to healthy-term controls. Strontium, zinc, and calcium were found to co-localise in stillbirth tissue samples, and calcium and strontium concentrations were correlated in all placental groups. Molybdenum was significantly decreased in stillbirth, foetal growth-restricted, and postdate placental tissue in comparison to healthy-term samples (p < 0.0001). Synchrotron-based XFM reveals elemental distribution within biological samples such as the placenta, allowing for the co-localisation of metal deposits that may have a pathological role. Our pilot study further indicates low concentrations of placental molybdenum in pregnancies complicated by foetal growth restriction, postdate delivery, and stillbirth.

Original languageEnglish
Article number2549
JournalNutrients
Volume16
Issue number15
DOIs
Publication statusPublished - Aug 2024
Externally publishedYes

Keywords

  • foetal growth restriction
  • molybdenum
  • postdate placental tissue
  • stillbirth
  • synchrotron
  • X-ray fluorescence microscopy

Fingerprint

Dive into the research topics of 'Placental Element Content Assessed via Synchrotron-Based X-ray Fluorescence Microscopy Identifies Low Molybdenum Concentrations in Foetal Growth Restriction, Postdate Delivery and Stillbirth'. Together they form a unique fingerprint.

Cite this