TY - JOUR
T1 - Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model
AU - Liu, Yang
AU - Sun, Fan
PY - 2013/9/1
Y1 - 2013/9/1
N2 - In order to successfully estimate parameters of a numerical model, multiple criteria should be considered. Multi-objective Differential Evolution (MODE) and Multi-objective Genetic Algorithm (MOGA) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. We describe the performance of two population based search algorithms (Nondominated Sorting Differential Evolution (NSDE) and Nondominated Sorting Genetic Algorithm (NGAII)) when applied to parameter estimation of a pressure swing adsorption (PSA) model. Full PSA mode is a complicated dynamic processing involving all transfer phenomena (mass, heat and momentum transfer) and has proven to be successful in a wide of applications. The limitation of using full PSA models is their expensive computational requirement. The parameter estimation analysis usually needs to run the numerical model and evaluate the performance thousands of times. However, in real world applications, there is simply not enough time and resources to perform such a huge number of model runs. In this study, a computational framework, known as v-support vector regression (v-SVR) PSA model, is presented for solving computationally expensive simulation problems. Formulation of an automatic parameter estimation strategy for the PSA model is outline. The simulations show that the NSDE is able to find better spread of solutions and better convergence near the true Pareto-optimal front compared to NSGAII-one elitist MOGA that pays special attention to creating a diverse Pareto-optimal front.
AB - In order to successfully estimate parameters of a numerical model, multiple criteria should be considered. Multi-objective Differential Evolution (MODE) and Multi-objective Genetic Algorithm (MOGA) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. We describe the performance of two population based search algorithms (Nondominated Sorting Differential Evolution (NSDE) and Nondominated Sorting Genetic Algorithm (NGAII)) when applied to parameter estimation of a pressure swing adsorption (PSA) model. Full PSA mode is a complicated dynamic processing involving all transfer phenomena (mass, heat and momentum transfer) and has proven to be successful in a wide of applications. The limitation of using full PSA models is their expensive computational requirement. The parameter estimation analysis usually needs to run the numerical model and evaluate the performance thousands of times. However, in real world applications, there is simply not enough time and resources to perform such a huge number of model runs. In this study, a computational framework, known as v-support vector regression (v-SVR) PSA model, is presented for solving computationally expensive simulation problems. Formulation of an automatic parameter estimation strategy for the PSA model is outline. The simulations show that the NSDE is able to find better spread of solutions and better convergence near the true Pareto-optimal front compared to NSGAII-one elitist MOGA that pays special attention to creating a diverse Pareto-optimal front.
KW - Multi-objective optimisation
KW - Parameter estimation
KW - Support vector machine
UR - http://www.scopus.com/inward/record.url?scp=84876042768&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2013.01.054
DO - 10.1016/j.eswa.2013.01.054
M3 - Article
AN - SCOPUS:84876042768
SN - 0957-4174
VL - 40
SP - 4496
EP - 4502
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - 11
ER -