Abstract
This paper is concerned with an optimization problem related to the pseudo p-Laplacian eigenproblem, with Robin boundary conditions. The principal eigenvalue is minimized over a rearrangement class generated by a fixed positive function. Existence and optimality condition are proved. The popular case where the generator is a characteristic function is also considered. In this case the method of domain derivative is used to capture qualitative features of the optimal solutions.
Original language | English |
---|---|
Article number | 1250127 |
Journal | International Journal of Mathematics |
Volume | 23 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2012 |
Keywords
- 35J25
- 49K30
- 74K15
- Pseudo p-Laplacian operator
- domain derivative 47A75
- existence
- optimal condition
- optimization
- rearrangement