TY - CHAP
T1 - Optimization of Functionally Graded Concretes Incorporating Steel Fibres and Recycled Aggregates
AU - Chan, Ricardo
AU - Moy, Charles K.S.
AU - Galobardes, Isaac
N1 - Publisher Copyright:
© 2022, RILEM.
PY - 2022
Y1 - 2022
N2 - Functionally graded material (FGM) refers to a class of material produced with grading composition and structure to achieve enhanced performance compared to homogeneous materials. Several studies have explored the application of the concept of FGM to enhance the flexural behaviour of concrete, producing functionally graded concrete (FGC). Previous results indicated that FGC produced with fibre reinforced recycled aggregate concrete (FRRAC) exhibited higher residual flexural strength than homogeneous FRRAC for ratios of reinforced height to total beam height (h/H) equal or higher than 0.75, demonstrating the benefits of FGC with FRRAC. Hence, this study aims to verify the optimum value of h/H to obtain the highest residual flexural performance of the FGC. To achieve this goal, an experimental program was carried out, in which, FGC fabricated with FRRAC was assessed under bending considering a content of fibre of 0.50% in volume, and values of h/H ranging from 0.70 to 1.00. The effect of h/H in fibre orientation was also evaluated using the inductive method. The results indicated that the highest residual flexural strength is obtained with h/H = 0.90. However, a balance between pre-cracking and post-cracking behaviour should be defined for each application, resulting in optimized values of h/H in FGC with FRRAC. Furthermore, since the fibre orientation was not affected by h/H, the same orientation factor used in the design of the fibre reinforced concrete elements can be adopted for FGC elements, increasing the potential application of FGC.
AB - Functionally graded material (FGM) refers to a class of material produced with grading composition and structure to achieve enhanced performance compared to homogeneous materials. Several studies have explored the application of the concept of FGM to enhance the flexural behaviour of concrete, producing functionally graded concrete (FGC). Previous results indicated that FGC produced with fibre reinforced recycled aggregate concrete (FRRAC) exhibited higher residual flexural strength than homogeneous FRRAC for ratios of reinforced height to total beam height (h/H) equal or higher than 0.75, demonstrating the benefits of FGC with FRRAC. Hence, this study aims to verify the optimum value of h/H to obtain the highest residual flexural performance of the FGC. To achieve this goal, an experimental program was carried out, in which, FGC fabricated with FRRAC was assessed under bending considering a content of fibre of 0.50% in volume, and values of h/H ranging from 0.70 to 1.00. The effect of h/H in fibre orientation was also evaluated using the inductive method. The results indicated that the highest residual flexural strength is obtained with h/H = 0.90. However, a balance between pre-cracking and post-cracking behaviour should be defined for each application, resulting in optimized values of h/H in FGC with FRRAC. Furthermore, since the fibre orientation was not affected by h/H, the same orientation factor used in the design of the fibre reinforced concrete elements can be adopted for FGC elements, increasing the potential application of FGC.
KW - Fibre orientation
KW - Functionally graded concrete
KW - Recycled aggregate concrete
KW - Steel fibre reinforced concrete
UR - http://www.scopus.com/inward/record.url?scp=85114519991&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-83719-8_2
DO - 10.1007/978-3-030-83719-8_2
M3 - Chapter
AN - SCOPUS:85114519991
T3 - RILEM Bookseries
SP - 13
EP - 23
BT - RILEM Bookseries
PB - Springer Science and Business Media B.V.
ER -