Optimal solution of the fractional order breast cancer competition model

H. Hassani, J. A.Tenreiro Machado, Z. Avazzadeh*, E. Safari, S. Mehrabi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

In this article, a fractional order breast cancer competition model (F-BCCM) under the Caputo fractional derivative is analyzed. A new set of basis functions, namely the generalized shifted Legendre polynomials, is proposed to deal with the solutions of F-BCCM. The F-BCCM describes the dynamics involving a variety of cancer factors, such as the stem, tumor and healthy cells, as well as the effects of excess estrogen and the body’s natural immune response on the cell populations. After combining the operational matrices with the Lagrange multipliers technique we obtain an optimization method for solving the F-BCCM whose convergence is investigated. Several examples show that a few number of basis functions lead to the satisfactory results. In fact, numerical experiments not only confirm the accuracy but also the practicability and computational efficiency of the devised technique.

Original languageEnglish
Article number15622
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - Dec 2021

Fingerprint

Dive into the research topics of 'Optimal solution of the fractional order breast cancer competition model'. Together they form a unique fingerprint.

Cite this