One-Step Digital Light Processing 3D Printing of Robust, Conductive, Shape-Memory Hydrogel for Customizing High-Performance Soft Devices

Hanqiang Zhang, Peiren Wang, Heng Zhang, Gangsheng Chen, Kai Wang, Xiaoyi Chen, Zhen Chen, Mingxing Jiang, Junhui Yang, Min Chen, Ji Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Mechanically robust and electrically conductive hydrogels hold significant promise for flexible device applications. However, conventional fabrication methods such as casting or injection molding meet challenges in delivering hydrogel objects with complex geometric structures and multicustomized functionalities. Herein, a 3D printable hydrogel with excellent mechanical properties and electrical conductivity is implemented via a facile one-step preparation strategy. With vat polymerization 3D printing technology, the hydrogel can be solidified based on a hybrid double-network mechanism involving in situ chemical and physical dual cross-linking. The hydrogel consists of two chemical networks including covalently cross-linked poly(acrylamide-co-acrylic acid) and chitosan, and zirconium ions are induced to form physically cross-linked metal-coordination bonds across both chemical networks. The 3D-printed hydrogel exhibits multiple excellent functionalities including enhanced mechanical properties (680% stretchability, 15.1 MJ/m3 toughness, and 7.30 MPa tensile strength), rapid printing speed (0.7-3 s/100 μm), high transparency (91%), favorable ionic conductivity (0.75 S/m), large strain gauge factor (≥7), and fast solvent transfer induced phase separation (in ∼3 s), which enable the development of high-performance flexible wearable sensors, shape memory actuators, and soft pneumatic robotics. The 3D printable multifunctional hydrogel provides a novel path for customizing next-generation intelligent soft devices.

Original languageEnglish
Pages (from-to)68131-68143
Number of pages13
JournalACS Applied Materials and Interfaces
Volume16
Issue number49
DOIs
Publication statusPublished - 11 Dec 2024

Keywords

  • 3D printing
  • double-network
  • flexible sensors
  • hydrogels
  • self-sensing actuators

Fingerprint

Dive into the research topics of 'One-Step Digital Light Processing 3D Printing of Robust, Conductive, Shape-Memory Hydrogel for Customizing High-Performance Soft Devices'. Together they form a unique fingerprint.

Cite this