TY - JOUR
T1 - NSCGCN
T2 - A novel deep GCN model to diagnosis COVID-19
AU - Tang, Chaosheng
AU - Hu, Chaochao
AU - Sun, Junding
AU - Wang, Shui Hua
AU - Zhang, Yu Dong
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/11
Y1 - 2022/11
N2 - Aim: Corona Virus Disease 2019 (COVID-19) was a lung disease with high mortality and was highly contagious. Early diagnosis of COVID-19 and distinguishing it from pneumonia was beneficial for subsequent treatment. Objectives: Recently, Graph Convolutional Network (GCN) has driven a significant contribution to disease diagnosis. However, limited by the nature of the graph convolution algorithm, deep GCN has an over-smoothing problem. Most of the current GCN models are shallow neural networks, which do not exceed five layers. Furthermore, the objective of this study is to develop a novel deep GCN model based on the DenseGCN and the pre-trained model of deep Convolutional Neural Network (CNN) to complete the diagnosis of chest X-ray (CXR) images. Methods: We apply the pre-trained model of deep CNN to perform feature extraction on the data to complete the extraction of pixel-level features in the image. And then, to extract the potential relationship between the obtained features, we propose Neighbourhood Feature Reconstruction Algorithm to reconstruct them into graph-structured data. Finally, we design a deep GCN model that exploits the graph-structured data to diagnose COVID-19 effectively. In the deep GCN model, we propose a Node-Self Convolution Algorithm (NSC) based on feature fusion to construct a deep GCN model called NSCGCN (Node-Self Convolution Graph Convolutional Network). Results: Experiments were carried out on the Computed Tomography (CT) and CXR datasets. The results on the CT dataset confirmed that: compared with the six state-of-the-art (SOTA) shallow GCN models, the accuracy and sensitivity of the proposed NSCGCN had improve 8% as sensitivity (Sen.) = 87.50%, F1 score = 97.37%, precision (Pre.) = 89.10%, accuracy (Acc.) = 97.50%, area under the ROC curve (AUC) = 97.09%. Moreover, the results on the CXR dataset confirmed that: compared with the fourteen SOTA GCN models, sixteen SOTA CNN transfer learning models and eight SOTA COVID-19 diagnosis methods on the COVID-19 dataset. Our proposed method had best performances as Sen. = 96.45%, F1 score = 96.45%, Pre. = 96.61%, Acc. = 96.45%, AUC = 99.22%. Conclusion: Our proposed NSCGCN model is effective and performed better than the thirty-eight SOTA methods. Thus, the proposed NSC could help build deep GCN models. Our proposed COVID-19 diagnosis method based on the NSCGCN model could help radiologists detect pneumonia from CXR images and distinguish COVID-19 from Ordinary Pneumonia (OPN). The source code of this work will be publicly available at https://github.com/TangChaosheng/NSCGCN.
AB - Aim: Corona Virus Disease 2019 (COVID-19) was a lung disease with high mortality and was highly contagious. Early diagnosis of COVID-19 and distinguishing it from pneumonia was beneficial for subsequent treatment. Objectives: Recently, Graph Convolutional Network (GCN) has driven a significant contribution to disease diagnosis. However, limited by the nature of the graph convolution algorithm, deep GCN has an over-smoothing problem. Most of the current GCN models are shallow neural networks, which do not exceed five layers. Furthermore, the objective of this study is to develop a novel deep GCN model based on the DenseGCN and the pre-trained model of deep Convolutional Neural Network (CNN) to complete the diagnosis of chest X-ray (CXR) images. Methods: We apply the pre-trained model of deep CNN to perform feature extraction on the data to complete the extraction of pixel-level features in the image. And then, to extract the potential relationship between the obtained features, we propose Neighbourhood Feature Reconstruction Algorithm to reconstruct them into graph-structured data. Finally, we design a deep GCN model that exploits the graph-structured data to diagnose COVID-19 effectively. In the deep GCN model, we propose a Node-Self Convolution Algorithm (NSC) based on feature fusion to construct a deep GCN model called NSCGCN (Node-Self Convolution Graph Convolutional Network). Results: Experiments were carried out on the Computed Tomography (CT) and CXR datasets. The results on the CT dataset confirmed that: compared with the six state-of-the-art (SOTA) shallow GCN models, the accuracy and sensitivity of the proposed NSCGCN had improve 8% as sensitivity (Sen.) = 87.50%, F1 score = 97.37%, precision (Pre.) = 89.10%, accuracy (Acc.) = 97.50%, area under the ROC curve (AUC) = 97.09%. Moreover, the results on the CXR dataset confirmed that: compared with the fourteen SOTA GCN models, sixteen SOTA CNN transfer learning models and eight SOTA COVID-19 diagnosis methods on the COVID-19 dataset. Our proposed method had best performances as Sen. = 96.45%, F1 score = 96.45%, Pre. = 96.61%, Acc. = 96.45%, AUC = 99.22%. Conclusion: Our proposed NSCGCN model is effective and performed better than the thirty-eight SOTA methods. Thus, the proposed NSC could help build deep GCN models. Our proposed COVID-19 diagnosis method based on the NSCGCN model could help radiologists detect pneumonia from CXR images and distinguish COVID-19 from Ordinary Pneumonia (OPN). The source code of this work will be publicly available at https://github.com/TangChaosheng/NSCGCN.
KW - COVID-19
KW - Deep graph convolutional network
KW - Densely connection
KW - Disease diagnosis
KW - Transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85139835126&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2022.106151
DO - 10.1016/j.compbiomed.2022.106151
M3 - Article
C2 - 36244303
AN - SCOPUS:85139835126
SN - 0010-4825
VL - 150
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 106151
ER -