Abstract
Let M be a compact Kähler manifold and N be a subvariety with codimension greater than or equal to 2. We show that there are no complete Kähler–Einstein metrics on M- N. As an application, let E be an exceptional divisor of M. Then M- E cannot admit any complete Kähler–Einstein metric if blow-down of E is a complex variety with only canonical or terminal singularities. A similar result is shown for pairs.
Original language | English |
---|---|
Pages (from-to) | 1271-1282 |
Number of pages | 12 |
Journal | Mathematische Annalen |
Volume | 369 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 1 Dec 2017 |
Externally published | Yes |
Fingerprint
Dive into the research topics of 'Nonexistence for complete Kähler–Einstein metrics on some noncompact manifolds'. Together they form a unique fingerprint.Cite this
Gao, P., Yau, S. T., & Zhou, W. (2017). Nonexistence for complete Kähler–Einstein metrics on some noncompact manifolds. Mathematische Annalen, 369(3-4), 1271-1282. https://doi.org/10.1007/s00208-016-1486-y