MXRA7 is involved in megakaryocyte differentiation and platelet production

Zhenjiang Sun, Benfang Wang, Ying Shen, Kunpeng Ma, Ting Wang, Yiqiang Wang*, Dandan Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Matrix remodeling is a critical process in hematopoiesis. The biology of MXRA7, as a matrix remodeling associated gene, has still not been reported in hematopoietic process. Public databases showed that MXRA7 expressed in hematopoietic stem cells, suggesting that it may be involved in hematopoiesis. We found that the amounts of megakaryocytes were lower in bone marrow and spleen from Mxra7-/-mice compared with that from wild-type mice. Knock-out of MXRA7 also reduced the amount of platelet in peripheral blood and affected the function of platelets. Knock-out of MXRA7 inhibited hematopoietic stem/progenitor cells differentiate to megakaryocytes possibly through down-regulating the expression of GATA-1 and FOG-1. Moreover, knockdown of MXRA7 in MEG-01 cells could inhibit the cell proliferation and cell apoptosis. Knockdown of MXRA7 inhibited the differentiation of MEG-01 cells and proplatelet formation through suppressing the ERK/MAPK signaling pathway and the expression of β-tubulin. In conclusion, the current study demonstrated the potential significance of MXRA7 in megakaryocyte differentiation and platelet production. The novel findings proposed a new target for the treatment of platelet-related diseases, and much more investigations are guaranteed to dissect the mechanisms of MXRA7 in megakaryocyte differentiation and platelet production.

Original languageEnglish
Pages (from-to)160-169
Number of pages10
JournalBlood Science
Volume5
Issue number3
DOIs
Publication statusPublished - 5 Jul 2023

Keywords

  • MXRA7
  • differentiation
  • megakaryocytes
  • platelet

Fingerprint

Dive into the research topics of 'MXRA7 is involved in megakaryocyte differentiation and platelet production'. Together they form a unique fingerprint.

Cite this