Abstract
Gamma-aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants' binding sensitivity to different point mutations in ionophore-lining second trans-membrane domains of GABA-A subunits, and maps possible location of convulsants' sites within the chloride ionophore. We also discuss data on inhibition of glycine, glutamate, serotonin (5-HT3) and N-acetylcholine receptors by GABA-A channel blockers, and examine the applicability of this model to other homologous ionotropic receptors. Positioning various convulsant-binding sites within ionophore of GABA-A receptors, this model enables a better understanding of complex architectonics of ionotropic receptors, and may be used for developing new channel-modulating drugs.
Original language | English |
---|---|
Pages (from-to) | 61-68 |
Number of pages | 8 |
Journal | Neurochemistry International |
Volume | 50 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2007 |
Externally published | Yes |
Keywords
- Binding sites
- Channel chemoconvulsants
- GABA-A receptors
- Ionophore
- Point mutagenesis