MagicTac: A Novel High-Resolution 3D Multi-layer Grid-Based Tactile Sensor

Wen Fan, Haoran Li, Dandan Zhang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

2 Citations (Scopus)

Abstract

Accurate robotic control over interactions with the environment is fundamentally grounded in understanding tactile contacts. In this paper, we introduce MagicTac, a novel high-resolution grid-based tactile sensor. This sensor employs a 3D multi-layer grid-based design, inspired by the Magic Cube structure. This structure can help increase the spatial resolution of MagicTac to perceive external interaction contacts. Moreover, the sensor is produced using the multi-material additive manufacturing technique, which simplifies the manufacturing process while ensuring repeatability of production. Compared to traditional vision-based tactile sensors, it offers the advantages of i) high spatial resolution, ii) significant affordability, and iii) fabrication-friendly construction that requires minimal assembly skills. We evaluated the proposed MagicTac in the tactile reconstruction task using the deformation field and optical flow. Results indicated that MagicTac could capture fine textures and is sensitive to dynamic contact information. Through the grid-based multi-material additive manufacturing technique, the affordability and productivity of MagicTac can be enhanced with a minimum manufacturing cost of £4.76 and a minimum manufacturing time of 24.6 minutes.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages388-394
Number of pages7
ISBN (Electronic)9798350384574
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Fingerprint

Dive into the research topics of 'MagicTac: A Novel High-Resolution 3D Multi-layer Grid-Based Tactile Sensor'. Together they form a unique fingerprint.

Cite this