TY - GEN
T1 - Learning deep image priors for blind image denoising
AU - Hou, Xianxu
AU - Luo, Hongming
AU - Liu, Jingxin
AU - Xu, Bolei
AU - Sun, Ke
AU - Gong, Yuanhao
AU - Liu, Bozhi
AU - Qiu, Guoping
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on H-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.
AB - Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on H-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.
UR - http://www.scopus.com/inward/record.url?scp=85079803713&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2019.00224
DO - 10.1109/CVPRW.2019.00224
M3 - Conference Proceeding
AN - SCOPUS:85079803713
T3 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
SP - 1738
EP - 1747
BT - Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
PB - IEEE Computer Society
T2 - 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
Y2 - 16 June 2019 through 20 June 2019
ER -