Learning deep image priors for blind image denoising

Xianxu Hou, Hongming Luo, Jingxin Liu, Bolei Xu, Ke Sun, Yuanhao Gong, Bozhi Liu, Guoping Qiu

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

6 Citations (Scopus)

Abstract

Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on H-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
PublisherIEEE Computer Society
Pages1738-1747
Number of pages10
ISBN (Electronic)9781728125060
DOIs
Publication statusPublished - Jun 2019
Externally publishedYes
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2019-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Fingerprint

Dive into the research topics of 'Learning deep image priors for blind image denoising'. Together they form a unique fingerprint.

Cite this