LB-KBQA:Large-language-model and BERT based Knowledge-Based Question and Answering System

Yan Zhao, Zhongyun Li, Yushan Pan, Jiaxing Wang, Zhiman Zhang, Yihong Wang

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Generative Artificial Intelligence (AI), because of its emergent abilities, has empowered various fields, one typical of which is large language models (LLMs). One of the typical application fields of Generative AI is large language models (LLMs), and the natural language understanding capability of LLM is dramatically improved when compared with conventional AI-based methods. The natural language understanding capability has always been a barrier to the intent recognition performance of the Knowledge-Based-Question-and-Answer (KBQA) system, which arises from linguistic diversity and the newly appeared intent. Conventional AI-based methods for intent recognition can be divided into semantic parsing-based and model-based approaches. However, both of the methods suffer from limited resources in intent recognition. To address this issue, we propose a novel KBQA system based on a Large Language Model(LLM) and BERT (LB-KBQA). With the help of generative AI, our proposed method could detect newly appeared intent and acquire new knowledge. In experiments on financial domain question answering, our model has demonstrated superior effectiveness.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE 22nd International Conference on Industrial Informatics, INDIN 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798331527471
DOIs
Publication statusPublished - 2024
Event22nd IEEE International Conference on Industrial Informatics, INDIN 2024 - Beijing, China
Duration: 18 Aug 202420 Aug 2024

Publication series

NameIEEE International Conference on Industrial Informatics (INDIN)
ISSN (Print)1935-4576

Conference

Conference22nd IEEE International Conference on Industrial Informatics, INDIN 2024
Country/TerritoryChina
CityBeijing
Period18/08/2420/08/24

Keywords

  • Generative AI
  • KBQA
  • LLM

Fingerprint

Dive into the research topics of 'LB-KBQA:Large-language-model and BERT based Knowledge-Based Question and Answering System'. Together they form a unique fingerprint.

Cite this