TY - JOUR
T1 - Land use and elevation interact to shape bird functional and phylogenetic diversity and structure
T2 - Implications for designing optimal agriculture landscapes
AU - Sreekar, Rachakonda
AU - Si, Xingfeng
AU - Sam, Katerina
AU - Liu, Jiajia
AU - Dayananda, Salindra
AU - Goodale, Uromi
AU - Kotagama, Sarath
AU - Goodale, Eben
N1 - Publisher Copyright:
© 2021 British Ecological Society
PY - 2021/8
Y1 - 2021/8
N2 - The conversion of rainforests into agriculture resulted in massive changes in species diversity and community structure. Although the conservation of the remaining rainforests is of utmost importance, identifying and creating a biodiversity-friendly agriculture landscape is vital for preserving biodiversity and their functions. Biodiversity studies in agriculture have often been conducted at low elevations. In this study, we compared the functional diversity (FD), phylogenetic diversity (PD) and community structure of birds along an interacting gradient of land use (protected rainforest, reserve buffer and agriculture) and elevation (low, middle and high) in Sri Lanka. Then, we measured the compositional change by identifying how ecological traits (dietary guild, vertical strata, body mass and dispersal ability) and conservation characteristics (forest dependence and threatened status) responded to land use types. Elevation and land use interacted with each other to shape bird FD. Depending on the elevation, FD in agriculture was either higher or similar to forest. However, PD was similar across all elevation and land use types. Bird community structure in forest was functionally and phylogenetically clustered in comparison to agriculture. Insectivorous birds declined from forest to agriculture, and so did understorey and middle-storey birds. But frugivorous and canopy birds did not change across land use types, while nectarivores, granivores and carnivores proliferated in agriculture. Forests were dominated by birds with low dispersal abilities, but birds in agriculture had more evenly distributed dispersal abilities. About half of all the individuals in agriculture were composed of forest species, several of which were threatened. Synthesis and applications. Most farmers in Sri Lanka practice agriculture on small farms (c. 2 ha) and rely on services (e.g. pest control and pollination) provided by biodiversity for their livelihoods. Our results underline the important role of these heterogeneous agriculture landscapes in maintaining high functional diversity (FD) and harbouring several threatened species. While FD in agriculture was comparatively high, conservation decisions based on land use alone cannot be reliable, because land use effects were elevation dependent. Thus, priority setting exercises aimed at designing optimal agriculture landscapes should consider landscape features, in combination with elevation, to benefit both people and wildlife outside protected areas.
AB - The conversion of rainforests into agriculture resulted in massive changes in species diversity and community structure. Although the conservation of the remaining rainforests is of utmost importance, identifying and creating a biodiversity-friendly agriculture landscape is vital for preserving biodiversity and their functions. Biodiversity studies in agriculture have often been conducted at low elevations. In this study, we compared the functional diversity (FD), phylogenetic diversity (PD) and community structure of birds along an interacting gradient of land use (protected rainforest, reserve buffer and agriculture) and elevation (low, middle and high) in Sri Lanka. Then, we measured the compositional change by identifying how ecological traits (dietary guild, vertical strata, body mass and dispersal ability) and conservation characteristics (forest dependence and threatened status) responded to land use types. Elevation and land use interacted with each other to shape bird FD. Depending on the elevation, FD in agriculture was either higher or similar to forest. However, PD was similar across all elevation and land use types. Bird community structure in forest was functionally and phylogenetically clustered in comparison to agriculture. Insectivorous birds declined from forest to agriculture, and so did understorey and middle-storey birds. But frugivorous and canopy birds did not change across land use types, while nectarivores, granivores and carnivores proliferated in agriculture. Forests were dominated by birds with low dispersal abilities, but birds in agriculture had more evenly distributed dispersal abilities. About half of all the individuals in agriculture were composed of forest species, several of which were threatened. Synthesis and applications. Most farmers in Sri Lanka practice agriculture on small farms (c. 2 ha) and rely on services (e.g. pest control and pollination) provided by biodiversity for their livelihoods. Our results underline the important role of these heterogeneous agriculture landscapes in maintaining high functional diversity (FD) and harbouring several threatened species. While FD in agriculture was comparatively high, conservation decisions based on land use alone cannot be reliable, because land use effects were elevation dependent. Thus, priority setting exercises aimed at designing optimal agriculture landscapes should consider landscape features, in combination with elevation, to benefit both people and wildlife outside protected areas.
KW - community structure
KW - ecosystem services
KW - environmental filtering
KW - functional diversity
KW - optimal agriculture
KW - phylogenetic diversity
UR - http://www.scopus.com/inward/record.url?scp=85107071447&partnerID=8YFLogxK
U2 - 10.1111/1365-2664.13927
DO - 10.1111/1365-2664.13927
M3 - Article
AN - SCOPUS:85107071447
SN - 0021-8901
VL - 58
SP - 1738
EP - 1748
JO - Journal of Applied Ecology
JF - Journal of Applied Ecology
IS - 8
ER -