Jump-Diffusion Processes

Carl Chiarella*, Xue Zhong He, Christina Sklibosios Nikitopoulos

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingChapterpeer-review

1 Citation (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 11
see details

Abstract

This chapter considers jump-diffusion processes to allow for price fluctuations to have two components, one consisting of the usual increments of a Wiener process, the second allows for “large” jumps from time-to-time. We introduce Poisson jump process with either absolute or proportional jump sizes through the stochastic integrals and provide solutions when both the stock price and Poisson jump size are log-normal. We also extend Ito’s lemma for the jump-diffusion processes.

Original languageEnglish
Title of host publicationDynamic Modeling and Econometrics in Economics and Finance
PublisherSpringer Science and Business Media Deutschland GmbH
Pages251-271
Number of pages21
DOIs
Publication statusPublished - 2015
Externally publishedYes

Publication series

NameDynamic Modeling and Econometrics in Economics and Finance
Volume21
ISSN (Print)1566-0419
ISSN (Electronic)2363-8370

Keywords

  • Asset Price
  • Jump Process
  • Jump Size
  • Stochastic Differential Equation
  • Wiener Process

Fingerprint

Dive into the research topics of 'Jump-Diffusion Processes'. Together they form a unique fingerprint.

Cite this

Chiarella, C., He, X. Z., & Nikitopoulos, C. S. (2015). Jump-Diffusion Processes. In Dynamic Modeling and Econometrics in Economics and Finance (pp. 251-271). (Dynamic Modeling and Econometrics in Economics and Finance; Vol. 21). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-662-45906-5_12