Joint topic-semantic-aware social recommendation for online voting

Hongwei Wang, Jia Wang, Miao Zhao, Jiannong Cao, Minyi Guo*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

29 Citations (Scopus)

Abstract

Online voting is an emerging feature in social networks, in which users can express their attitudes toward various issues and show their unique interest. Online voting imposes new challenges on recommendation, because the propagation of votings heavily depends on the structure of social networks as well as the content of votings. In this paper, we investigate how to utilize these two factors in a comprehensive manner when doing voting recommendation. First, due to the fact that existing text mining methods such as topic model and semantic model cannot well process the content of votings that is typically short and ambiguous, we propose a novel Topic-Enhanced Word Embedding (TEWE) method to learn word and document representation by jointly considering their topics and semantics. Then we propose our Joint Topic-Semantic-aware social Matrix Factorization (JTS-MF) model for voting recommendation. JTS-MF model calculates similarity among users and votings by combining their TEWE representation and structural information of social networks, and preserves this topic-semantic-social similarity during matrix factorization. To evaluate the performance of TEWE representation and JTS-MF model, we conduct extensive experiments on real online voting dataset. The results prove the efficacy of our approach against several state-of-the-art baselines.

Original languageEnglish
Title of host publicationCIKM 2017 - Proceedings of the 2017 ACM Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages347-356
Number of pages10
ISBN (Electronic)9781450349185
DOIs
Publication statusPublished - 6 Nov 2017
Externally publishedYes
Event26th ACM International Conference on Information and Knowledge Management, CIKM 2017 - Singapore, Singapore
Duration: 6 Nov 201710 Nov 2017

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
VolumePart F131841

Conference

Conference26th ACM International Conference on Information and Knowledge Management, CIKM 2017
Country/TerritorySingapore
CitySingapore
Period6/11/1710/11/17

Keywords

  • Matrix factorization
  • Online voting
  • Recommender systems
  • Topic-enhanced word embedding

Cite this