Abstract
A fullerene derivative (α-bis-PCBM) is purified from an as-produced bis-phenyl-C61-butyric acid methyl ester (bis-[60]PCBM) isomer mixture by preparative peak-recycling, high-performance liquid chromatography, and is employed as a templating agent for solution processing of metal halide perovskite films via an antisolvent method. The resulting α-bis-PCBM-containing perovskite solar cells achieve better stability, efficiency, and reproducibility when compared with analogous cells containing PCBM. α-bis-PCBM fills the vacancies and grain boundaries of the perovskite film, enhancing the crystallization of perovskites and addressing the issue of slow electron extraction. In addition, α-bis-PCBM resists the ingression of moisture and passivates voids or pinholes generated in the hole-transporting layer. As a result, a power conversion efficiency (PCE) of 20.8% is obtained, compared with 19.9% by PCBM, and is accompanied by excellent stability under heat and simulated sunlight. The PCE of unsealed devices dropped by less than 10% in ambient air (40% RH) after 44 d at 65 °C, and by 4% after 600 h under continuous full-sun illumination and maximum power point tracking, respectively.
Original language | English |
---|---|
Article number | 1606806 |
Journal | Advanced Materials |
Volume | 29 |
Issue number | 17 |
DOIs | |
Publication status | Published - 3 May 2017 |
Externally published | Yes |
Keywords
- bis-PCBM
- perovskites
- solar cells
- stabilities